Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
robotics-codes-from-scratch
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
rli
robotics-codes-from-scratch
Compare revisions
cf0825dcc6b3be9e2aedd422e1d37677498042ad to f802154a66b6d192bc1c716cca185d9479555015
Compare revisions
Changes are shown as if the
source
revision was being merged into the
target
revision.
Learn more about comparing revisions.
Source
rli/robotics-codes-from-scratch
Select target project
No results found
f802154a66b6d192bc1c716cca185d9479555015
Select Git revision
Branches
develop
master
Swap
Target
rli/robotics-codes-from-scratch
Select target project
rli/robotics-codes-from-scratch
1 result
cf0825dcc6b3be9e2aedd422e1d37677498042ad
Select Git revision
Branches
develop
master
Show changes
Only incoming changes from source
Include changes to target since source was created
Compare
Commits on Source (2)
added conditional sampling, added viapoints, removed scipy dependency
· ad2e84e6
Tobias Löw
authored
3 months ago
ad2e84e6
Merge branch 'master' of gitlab.idiap.ch:rli/robotics-codes-from-scratch
· f802154a
Tobias Löw
authored
3 months ago
f802154a
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
python/LQR_probabilistic.py
+35
-13
35 additions, 13 deletions
python/LQR_probabilistic.py
with
35 additions
and
13 deletions
python/LQR_probabilistic.py
View file @
f802154a
import
numpy
as
np
from
math
import
factorial
import
matplotlib.pyplot
as
plt
from
scipy.linalg
import
solve_continuous_are
from
scipy.stats
import
multivariate_normal
# Parameters
# ===============================
...
...
@@ -13,16 +11,23 @@ param.nbVarPos = 2 # Number of position variable
param
.
nbVar
=
param
.
nbVarPos
*
param
.
nbDeriv
# Dimension of state vector
param
.
nbData
=
100
# Number of datapoints
param
.
rfactor
=
1e-7
# Control weight term
param
.
nbVia
=
4
R
=
np
.
eye
((
param
.
nbData
-
1
)
*
param
.
nbVarPos
)
*
param
.
rfactor
# Control cost matrix
Q
=
np
.
zeros
((
param
.
nbVar
*
param
.
nbData
,
param
.
nbVar
*
param
.
nbData
))
# Task precision for augmented state
xd
=
np
.
zeros
([
param
.
nbVar
,
param
.
nbData
])
target
=
np
.
random
.
uniform
(
size
=
param
.
nbVarPos
)
xd
[:,
param
.
nbData
-
1
]
=
np
.
concatenate
((
target
,
np
.
zeros
(
param
.
nbVarPos
)))
xd
=
xd
.
T
.
flatten
()
targets
=
[]
for
k
in
range
(
param
.
nbVia
):
idx
=
int
((
k
+
1
)
*
param
.
nbData
/
param
.
nbVia
-
1
)
target
=
np
.
random
.
uniform
(
size
=
param
.
nbVarPos
)
xd
[:,
idx
]
=
np
.
concatenate
((
target
,
np
.
zeros
(
param
.
nbVarPos
)))
targets
.
append
(
target
)
idx2
=
idx
*
param
.
nbVar
Q
[
idx2
:
idx2
+
param
.
nbVar
,
idx2
:
idx2
+
param
.
nbVar
]
=
200.0
*
np
.
diag
([
1
,
1
,
0
,
0
])
Q
[
param
.
nbVar
*
(
param
.
nbData
-
1
):
param
.
nbVar
*
param
.
nbData
,
param
.
nbVar
*
(
param
.
nbData
-
1
):
param
.
nbVar
*
param
.
nbData
]
=
10.0
*
np
.
eye
(
param
.
nbVar
)
xd
=
xd
.
T
.
flatten
()
targets
=
np
.
array
(
targets
)
A1d
=
np
.
zeros
((
param
.
nbDeriv
,
param
.
nbDeriv
))
B1d
=
np
.
zeros
((
param
.
nbDeriv
,
1
))
...
...
@@ -48,19 +53,36 @@ for i in range(1,param.nbData):
x0
=
np
.
random
.
uniform
(
size
=
param
.
nbVar
)
mean
=
Sx
@
x0
+
Su
@
np
.
linalg
.
inv
(
Su
.
T
@
Q
@
Su
+
R
)
@
Su
.
T
@
Q
@
(
xd
-
Sx
@
x0
)
cov
=
Su
@
(
Su
.
T
@
Q
@
Su
+
R
)
@
Su
.
T
cov
=
Su
@
(
Su
.
T
@
Q
@
Su
+
R
)
@
Su
.
T
+
1e-7
*
np
.
eye
(
param
.
nbVar
*
param
.
nbData
)
viaidx
=
param
.
nbData
-
1
idx1
=
slice
(
viaidx
*
param
.
nbVar
,
viaidx
*
param
.
nbVar
+
param
.
nbVar
)
idx2
=
slice
(
0
,
viaidx
*
param
.
nbVar
)
trajectories
=
multivariate_normal
.
rvs
(
mean
=
mean
,
cov
=
cov
,
size
=
100
)
mu1
=
mean
[
idx1
]
mu2
=
mean
[
idx2
]
sigma11
=
cov
[
idx1
,
idx1
]
sigma22
=
cov
[
idx2
,
idx2
]
sigma12
=
cov
[
idx1
,
idx2
]
sigma21
=
cov
[
idx2
,
idx1
]
xc
=
np
.
random
.
uniform
(
size
=
param
.
nbVar
)
cmean
=
mu2
+
sigma21
@
np
.
linalg
.
inv
(
sigma11
)
@
(
xc
-
mu1
)
ccov
=
sigma22
-
sigma21
@
np
.
linalg
.
inv
(
sigma11
)
@
sigma12
plt
.
figure
()
for
k
in
range
(
100
):
trajectory
=
trajectories
[
k
,
:]
trajectory
=
trajectory
.
reshape
((
param
.
nbData
,
param
.
nbVar
))
plt
.
plot
(
trajectory
[:,
0
],
trajectory
[:,
1
],
alpha
=
0.5
)
t
=
mean
+
np
.
linalg
.
cholesky
(
cov
)
@
np
.
random
.
randn
(
param
.
nbVar
*
param
.
nbData
)
t
=
t
.
reshape
((
param
.
nbData
,
param
.
nbVar
))
plt
.
plot
(
t
[:,
0
],
t
[:,
1
],
alpha
=
0.1
,
color
=
'
red
'
)
ct
=
cmean
+
np
.
linalg
.
cholesky
(
ccov
)
@
np
.
random
.
randn
(
param
.
nbVar
*
(
param
.
nbData
-
1
))
ct
=
ct
.
reshape
(((
param
.
nbData
-
1
),
param
.
nbVar
))
plt
.
plot
(
ct
[:,
0
],
ct
[:,
1
],
alpha
=
0.1
,
color
=
'
green
'
)
plt
.
scatter
(
x0
[
0
],
x0
[
1
],
color
=
'
green
'
,
label
=
'
Initial State
'
)
plt
.
scatter
(
target
[
0
],
target
[
1
],
color
=
'
red
'
,
label
=
'
Target State
'
)
plt
.
scatter
(
x0
[
0
],
x0
[
1
],
color
=
'
red
'
,
label
=
'
Initial State
'
)
plt
.
scatter
(
xc
[
0
],
xc
[
1
],
color
=
'
blue
'
,
label
=
'
Conditional State
'
)
plt
.
scatter
(
targets
[:,
0
],
targets
[:,
1
],
color
=
'
green
'
,
label
=
'
Viapoints
'
)
plt
.
legend
()
plt
.
grid
()
plt
.
show
()
This diff is collapsed.
Click to expand it.