Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
robotics-codes-from-scratch
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
rli
robotics-codes-from-scratch
Commits
ad2e84e6
Commit
ad2e84e6
authored
4 months ago
by
Tobias Löw
Browse files
Options
Downloads
Patches
Plain Diff
added conditional sampling, added viapoints, removed scipy dependency
parent
51fda1df
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
python/LQR_probabilistic.py
+35
-13
35 additions, 13 deletions
python/LQR_probabilistic.py
with
35 additions
and
13 deletions
python/LQR_probabilistic.py
+
35
−
13
View file @
ad2e84e6
import
numpy
as
np
from
math
import
factorial
import
matplotlib.pyplot
as
plt
from
scipy.linalg
import
solve_continuous_are
from
scipy.stats
import
multivariate_normal
# Parameters
# ===============================
...
...
@@ -13,16 +11,23 @@ param.nbVarPos = 2 # Number of position variable
param
.
nbVar
=
param
.
nbVarPos
*
param
.
nbDeriv
# Dimension of state vector
param
.
nbData
=
100
# Number of datapoints
param
.
rfactor
=
1e-7
# Control weight term
param
.
nbVia
=
4
R
=
np
.
eye
((
param
.
nbData
-
1
)
*
param
.
nbVarPos
)
*
param
.
rfactor
# Control cost matrix
Q
=
np
.
zeros
((
param
.
nbVar
*
param
.
nbData
,
param
.
nbVar
*
param
.
nbData
))
# Task precision for augmented state
xd
=
np
.
zeros
([
param
.
nbVar
,
param
.
nbData
])
target
=
np
.
random
.
uniform
(
size
=
param
.
nbVarPos
)
xd
[:,
param
.
nbData
-
1
]
=
np
.
concatenate
((
target
,
np
.
zeros
(
param
.
nbVarPos
)))
xd
=
xd
.
T
.
flatten
()
targets
=
[]
for
k
in
range
(
param
.
nbVia
):
idx
=
int
((
k
+
1
)
*
param
.
nbData
/
param
.
nbVia
-
1
)
target
=
np
.
random
.
uniform
(
size
=
param
.
nbVarPos
)
xd
[:,
idx
]
=
np
.
concatenate
((
target
,
np
.
zeros
(
param
.
nbVarPos
)))
targets
.
append
(
target
)
idx2
=
idx
*
param
.
nbVar
Q
[
idx2
:
idx2
+
param
.
nbVar
,
idx2
:
idx2
+
param
.
nbVar
]
=
200.0
*
np
.
diag
([
1
,
1
,
0
,
0
])
Q
[
param
.
nbVar
*
(
param
.
nbData
-
1
):
param
.
nbVar
*
param
.
nbData
,
param
.
nbVar
*
(
param
.
nbData
-
1
):
param
.
nbVar
*
param
.
nbData
]
=
10.0
*
np
.
eye
(
param
.
nbVar
)
xd
=
xd
.
T
.
flatten
()
targets
=
np
.
array
(
targets
)
A1d
=
np
.
zeros
((
param
.
nbDeriv
,
param
.
nbDeriv
))
B1d
=
np
.
zeros
((
param
.
nbDeriv
,
1
))
...
...
@@ -48,19 +53,36 @@ for i in range(1,param.nbData):
x0
=
np
.
random
.
uniform
(
size
=
param
.
nbVar
)
mean
=
Sx
@
x0
+
Su
@
np
.
linalg
.
inv
(
Su
.
T
@
Q
@
Su
+
R
)
@
Su
.
T
@
Q
@
(
xd
-
Sx
@
x0
)
cov
=
Su
@
(
Su
.
T
@
Q
@
Su
+
R
)
@
Su
.
T
cov
=
Su
@
(
Su
.
T
@
Q
@
Su
+
R
)
@
Su
.
T
+
1e-7
*
np
.
eye
(
param
.
nbVar
*
param
.
nbData
)
viaidx
=
param
.
nbData
-
1
idx1
=
slice
(
viaidx
*
param
.
nbVar
,
viaidx
*
param
.
nbVar
+
param
.
nbVar
)
idx2
=
slice
(
0
,
viaidx
*
param
.
nbVar
)
trajectories
=
multivariate_normal
.
rvs
(
mean
=
mean
,
cov
=
cov
,
size
=
100
)
mu1
=
mean
[
idx1
]
mu2
=
mean
[
idx2
]
sigma11
=
cov
[
idx1
,
idx1
]
sigma22
=
cov
[
idx2
,
idx2
]
sigma12
=
cov
[
idx1
,
idx2
]
sigma21
=
cov
[
idx2
,
idx1
]
xc
=
np
.
random
.
uniform
(
size
=
param
.
nbVar
)
cmean
=
mu2
+
sigma21
@
np
.
linalg
.
inv
(
sigma11
)
@
(
xc
-
mu1
)
ccov
=
sigma22
-
sigma21
@
np
.
linalg
.
inv
(
sigma11
)
@
sigma12
plt
.
figure
()
for
k
in
range
(
100
):
trajectory
=
trajectories
[
k
,
:]
trajectory
=
trajectory
.
reshape
((
param
.
nbData
,
param
.
nbVar
))
plt
.
plot
(
trajectory
[:,
0
],
trajectory
[:,
1
],
alpha
=
0.5
)
t
=
mean
+
np
.
linalg
.
cholesky
(
cov
)
@
np
.
random
.
randn
(
param
.
nbVar
*
param
.
nbData
)
t
=
t
.
reshape
((
param
.
nbData
,
param
.
nbVar
))
plt
.
plot
(
t
[:,
0
],
t
[:,
1
],
alpha
=
0.1
,
color
=
'
red
'
)
ct
=
cmean
+
np
.
linalg
.
cholesky
(
ccov
)
@
np
.
random
.
randn
(
param
.
nbVar
*
(
param
.
nbData
-
1
))
ct
=
ct
.
reshape
(((
param
.
nbData
-
1
),
param
.
nbVar
))
plt
.
plot
(
ct
[:,
0
],
ct
[:,
1
],
alpha
=
0.1
,
color
=
'
green
'
)
plt
.
scatter
(
x0
[
0
],
x0
[
1
],
color
=
'
green
'
,
label
=
'
Initial State
'
)
plt
.
scatter
(
target
[
0
],
target
[
1
],
color
=
'
red
'
,
label
=
'
Target State
'
)
plt
.
scatter
(
x0
[
0
],
x0
[
1
],
color
=
'
red
'
,
label
=
'
Initial State
'
)
plt
.
scatter
(
xc
[
0
],
xc
[
1
],
color
=
'
blue
'
,
label
=
'
Conditional State
'
)
plt
.
scatter
(
targets
[:,
0
],
targets
[:,
1
],
color
=
'
green
'
,
label
=
'
Viapoints
'
)
plt
.
legend
()
plt
.
grid
()
plt
.
show
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment