Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
robotics-codes-from-scratch
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
rli
robotics-codes-from-scratch
Compare revisions
1094251d93f81e1137cb22116044dd3ac0d15248 to 51fda1df8d71453b3bb157cb84596846f4f945b4
Compare revisions
Changes are shown as if the
source
revision was being merged into the
target
revision.
Learn more about comparing revisions.
Source
rli/robotics-codes-from-scratch
Select target project
No results found
51fda1df8d71453b3bb157cb84596846f4f945b4
Select Git revision
Branches
develop
master
Swap
Target
rli/robotics-codes-from-scratch
Select target project
rli/robotics-codes-from-scratch
1 result
1094251d93f81e1137cb22116044dd3ac0d15248
Select Git revision
Branches
develop
master
Show changes
Only incoming changes from source
Include changes to target since source was created
Compare
Commits on Source (2)
added probabilistic LQR
· 3cdacf1a
Tobias Löw
authored
4 months ago
3cdacf1a
Merge branch 'master' of gitlab.idiap.ch:rli/robotics-codes-from-scratch
· 51fda1df
Tobias Löw
authored
4 months ago
51fda1df
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
python/LQR_probabilistic.py
+66
-0
66 additions, 0 deletions
python/LQR_probabilistic.py
with
66 additions
and
0 deletions
python/LQR_probabilistic.py
0 → 100644
View file @
51fda1df
import
numpy
as
np
from
math
import
factorial
import
matplotlib.pyplot
as
plt
from
scipy.linalg
import
solve_continuous_are
from
scipy.stats
import
multivariate_normal
# Parameters
# ===============================
param
=
lambda
:
None
# Lazy way to define an empty class in python
param
.
dt
=
1e-2
# Time step length
param
.
nbDeriv
=
2
# Order of the dynamical system
param
.
nbVarPos
=
2
# Number of position variable
param
.
nbVar
=
param
.
nbVarPos
*
param
.
nbDeriv
# Dimension of state vector
param
.
nbData
=
100
# Number of datapoints
param
.
rfactor
=
1e-7
# Control weight term
R
=
np
.
eye
((
param
.
nbData
-
1
)
*
param
.
nbVarPos
)
*
param
.
rfactor
# Control cost matrix
Q
=
np
.
zeros
((
param
.
nbVar
*
param
.
nbData
,
param
.
nbVar
*
param
.
nbData
))
# Task precision for augmented state
xd
=
np
.
zeros
([
param
.
nbVar
,
param
.
nbData
])
target
=
np
.
random
.
uniform
(
size
=
param
.
nbVarPos
)
xd
[:,
param
.
nbData
-
1
]
=
np
.
concatenate
((
target
,
np
.
zeros
(
param
.
nbVarPos
)))
xd
=
xd
.
T
.
flatten
()
Q
[
param
.
nbVar
*
(
param
.
nbData
-
1
):
param
.
nbVar
*
param
.
nbData
,
param
.
nbVar
*
(
param
.
nbData
-
1
):
param
.
nbVar
*
param
.
nbData
]
=
10.0
*
np
.
eye
(
param
.
nbVar
)
A1d
=
np
.
zeros
((
param
.
nbDeriv
,
param
.
nbDeriv
))
B1d
=
np
.
zeros
((
param
.
nbDeriv
,
1
))
for
i
in
range
(
param
.
nbDeriv
):
A1d
+=
np
.
diag
(
np
.
ones
(
param
.
nbDeriv
-
i
),
i
)
*
param
.
dt
**
i
*
1
/
factorial
(
i
)
B1d
[
param
.
nbDeriv
-
i
-
1
]
=
param
.
dt
**
(
i
+
1
)
*
1
/
factorial
(
i
+
1
)
A
=
np
.
eye
(
param
.
nbVar
)
A
[:
param
.
nbVar
,
:
param
.
nbVar
]
=
np
.
kron
(
A1d
,
np
.
identity
(
param
.
nbVarPos
))
B
=
np
.
zeros
((
param
.
nbVar
,
param
.
nbVarPos
))
B
[:
param
.
nbVar
]
=
np
.
kron
(
B1d
,
np
.
identity
(
param
.
nbVarPos
))
Su
=
np
.
zeros
((
param
.
nbVar
*
param
.
nbData
,
param
.
nbVarPos
*
(
param
.
nbData
-
1
)))
Sx
=
np
.
kron
(
np
.
ones
((
param
.
nbData
,
1
)),
np
.
eye
(
param
.
nbVar
,
param
.
nbVar
))
M
=
B
for
i
in
range
(
1
,
param
.
nbData
):
Sx
[
i
*
param
.
nbVar
:
param
.
nbData
*
param
.
nbVar
,:]
=
np
.
dot
(
Sx
[
i
*
param
.
nbVar
:
param
.
nbData
*
param
.
nbVar
,:],
A
)
Su
[
param
.
nbVar
*
i
:
param
.
nbVar
*
i
+
M
.
shape
[
0
],
0
:
M
.
shape
[
1
]]
=
M
M
=
np
.
hstack
((
np
.
dot
(
A
,
M
),
B
))
# [0,nb_state_var-1]
x0
=
np
.
random
.
uniform
(
size
=
param
.
nbVar
)
mean
=
Sx
@
x0
+
Su
@
np
.
linalg
.
inv
(
Su
.
T
@
Q
@
Su
+
R
)
@
Su
.
T
@
Q
@
(
xd
-
Sx
@
x0
)
cov
=
Su
@
(
Su
.
T
@
Q
@
Su
+
R
)
@
Su
.
T
trajectories
=
multivariate_normal
.
rvs
(
mean
=
mean
,
cov
=
cov
,
size
=
100
)
plt
.
figure
()
for
k
in
range
(
100
):
trajectory
=
trajectories
[
k
,
:]
trajectory
=
trajectory
.
reshape
((
param
.
nbData
,
param
.
nbVar
))
plt
.
plot
(
trajectory
[:,
0
],
trajectory
[:,
1
],
alpha
=
0.5
)
plt
.
scatter
(
x0
[
0
],
x0
[
1
],
color
=
'
green
'
,
label
=
'
Initial State
'
)
plt
.
scatter
(
target
[
0
],
target
[
1
],
color
=
'
red
'
,
label
=
'
Target State
'
)
plt
.
legend
()
plt
.
grid
()
plt
.
show
()
This diff is collapsed.
Click to expand it.