Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
robotics-codes-from-scratch
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
rli
robotics-codes-from-scratch
Commits
0052a286
Commit
0052a286
authored
3 months ago
by
Sylvain CALINON
Browse files
Options
Downloads
Plain Diff
Merge branch 'master' of gitlab.idiap.ch:rli/robotics-codes-from-scratch
parents
49831881
c8f48299
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
python/IK_manipulator_manipulability.py
+23
-250
23 additions, 250 deletions
python/IK_manipulator_manipulability.py
python/LQR_probabilistic.py
+66
-0
66 additions, 0 deletions
python/LQR_probabilistic.py
with
89 additions
and
250 deletions
python/IK_manipulator_manipulability.py
+
23
−
250
View file @
0052a286
...
...
@@ -73,7 +73,6 @@ x[0] = x[0] + np.pi
## Inverse kinematics (IK)
# ===============================
ax
.
scatter
(
fh
[
0
],
fh
[
1
],
color
=
'
r
'
,
marker
=
'
.
'
,
s
=
10
**
2
)
#Plot target
for
t
in
range
(
param
.
nbData
):
f
=
fkin
(
x
,
param
)
# Forward kinematics (for end-effector)
...
...
@@ -83,72 +82,15 @@ for t in range(param.nbData):
f_rob
=
fkin0
(
x
,
param
)
# Forward kinematics (for all articulations, including end-effector)
ax
.
plot
(
f_rob
[
0
,:],
f_rob
[
1
,:],
color
=
str
(
1
-
t
/
param
.
nbData
),
linewidth
=
2
)
# Plot robot
### MANIPULABILITY ###
J
=
J
[:
2
,:]
center
=
np
.
array
([
f
[
0
],
f
[
1
]])
# end-effector position
print
(
f
"
Center:
{
center
}
"
)
length
,
width
,
height
=
1.8
,
1.5
,
1
# max joint velocities
size
=
np
.
array
([
length
,
width
,
height
])
refell
=
130
*
np
.
identity
(
2
)
# reference ellipsoid
# Choice of the Jacobian matrix
J1
=
False
J2
=
False
J3
=
False
J4
=
False
diffJac
=
[
J1
,
J2
,
J3
,
J4
]
# 1. Robot manipulator
if
J1
==
True
:
theta
=
5
*
m
.
pi
/
6
U
=
np
.
array
([[
m
.
cos
(
theta
),
-
m
.
sin
(
theta
)],[
m
.
sin
(
theta
),
m
.
cos
(
theta
)]])
J
=
U
.
T
@
J
print
(
J
)
# 2. Bounded joint-space
if
J2
==
True
:
jminlim
=
-
np
.
ones
(
param
.
nbVarX
)
jmaxlim
=
np
.
ones
(
param
.
nbVarX
)
J
=
np
.
diag
(
1
-
np
.
heaviside
(
x
-
jminlim
,
0
)
*
np
.
heaviside
(
jmaxlim
-
x
,
0
))[:
2
,:]
print
(
J
)
# 3. Bounded task-space
if
J3
==
True
:
tminlim
=
-
np
.
ones
(
2
)
tmaxlim
=
np
.
ones
(
2
)
J
=
np
.
diag
(
1
-
np
.
heaviside
(
f
[:
2
]
-
tminlim
,
0
)
*
np
.
heaviside
(
tmaxlim
-
f
[:
2
],
0
))
@
J
print
(
J
)
# 4. Object boundaries
if
J4
==
True
:
theta
=
m
.
pi
/
4
U
=
np
.
array
([[
m
.
cos
(
theta
),
-
m
.
sin
(
theta
)],[
m
.
sin
(
theta
),
m
.
cos
(
theta
)]])
tminlim
=
-
np
.
ones
(
2
)
tmaxlim
=
2
*
np
.
ones
(
2
)
J
=
np
.
diag
(
1
-
np
.
heaviside
(
U
.
T
@
(
f
[:
2
]
-
fh
[:
2
])
-
tminlim
,
0
)
*
np
.
heaviside
(
tmaxlim
-
(
U
.
T
@
(
f
[:
2
]
-
fh
[:
2
])),
0
))
@
J
print
(
J
)
# Boundaries in joint-velocity space
# 1. Rectangular cuboid
showedges
=
False
# Shows the mapping of the cube's edges
# 2. Ellipse
ellBound
=
True
# 3. Superellipsoid
superBound
=
False
superVolume
=
False
# Returns the fraction of the rectangular cuboid's volume covered by the superellipsoid
# 1. Rectangular cuboid
# initialize a rectangular cuboid for polytope
cube
=
np
.
zeros
((
2
**
param
.
nbVarX
,
param
.
nbVarX
))
vertex
=
np
.
zeros
(
param
.
nbVarX
)
# These two loops store the numbers 0 to 7 in binary (which can be seen as the coordinates of a cube)
...
...
@@ -159,12 +101,10 @@ for count1 in range(2 ** param.nbVarX):
# Rescaling so that the center of the cube is located at the origin
cube
=
cube
*
2
-
1
for
i
in
range
(
len
(
size
)):
cube
[:,
i
]
=
cube
[:,
i
]
*
size
[
i
]
# Computation of the manipulability polytope
# Computation of the manipulability polytope
(blue)
polytope
=
np
.
zeros
((
2
**
param
.
nbVarX
,
2
))
for
count
in
range
(
2
**
param
.
nbVarX
):
polytope
[
count
]
=
J
@
cube
[
count
]
+
center
...
...
@@ -173,17 +113,13 @@ xpoints = polytope[:,0]
ypoints
=
polytope
[:,
1
]
polytope
=
np
.
array
([
xpoints
,
ypoints
]).
T
if
not
any
(
diffJac
)
==
True
:
hull
=
scipy
.
spatial
.
ConvexHull
(
polytope
)
# vertices of the covex hull (might come in handy)
vertices
=
np
.
zeros
((
len
(
hull
.
vertices
),
2
))
for
i
in
range
(
len
(
hull
.
vertices
)):
vertices
[
i
]
=
polytope
[
hull
.
vertices
[
i
]]
cube_norms
=
np
.
linalg
.
norm
(
vertices
,
axis
=
1
)
for
simplex
in
hull
.
simplices
:
plt
.
plot
(
polytope
[
simplex
,
0
],
polytope
[
simplex
,
1
],
'
b--
'
)
hull
=
scipy
.
spatial
.
ConvexHull
(
polytope
)
vertices
=
np
.
zeros
((
len
(
hull
.
vertices
),
2
))
for
i
in
range
(
len
(
hull
.
vertices
)):
vertices
[
i
]
=
polytope
[
hull
.
vertices
[
i
]]
ax
.
plot
(
xpoints
,
ypoints
,
"
kx
"
)
for
simplex
in
hull
.
simplices
:
plt
.
plot
(
polytope
[
simplex
,
0
],
polytope
[
simplex
,
1
],
'
b--
'
)
def
norm
(
vec
,
coeff
,
exp
):
...
...
@@ -199,189 +135,26 @@ def sample(npoints, coeff, exp):
vecs
[
count
]
=
vecs
[
count
]
/
norm
(
vecs
[
count
],
coeff
,
exp
)
return
vecs
# 2. Ellipsoid
if
ellBound
==
True
:
num_iter
=
1000
# coeff = np.array([1,1,1]) # these are the dimensions of the superellipsoid in joint-velocity space
coeff
=
size
# if one wants the superellipsoid to be contained in the cuboid
exp
=
2
# plot the manipulability ellipsoid (red)
num_iter
=
1000
coeff
=
np
.
array
([
1
,
1
,
1
])
# these are the dimensions of the superellipsoid in joint-velocity space
# coeff = size # if one wants the superellipsoid to be contained in the cuboid
ell_jvlim
=
sample
(
num_iter
,
coeff
,
2
)
ell_tvlim
=
np
.
zeros
((
num_iter
,
2
))
ell_jvlim
=
sample
(
num_iter
,
coeff
,
2
)
for
count
in
range
(
len
(
ell_jvlim
)):
ell_tvlim
[
count
]
=
J
@
ell_jvlim
[
count
]
+
center
ell_tvlim
=
np
.
zeros
((
num_iter
,
2
))
ell_x
,
ell_y
=
ell_tvlim
.
T
for
count
in
range
(
len
(
ell_jvlim
)):
ell_tvlim
[
count
]
=
J
@
ell_jvlim
[
count
]
+
center
A
=
np
.
diag
(
coeff
**
2
)
Q
=
J
@
A
@
J
.
T
eigenvals
,
eigenvecs
=
np
.
linalg
.
eig
(
Q
)
# Sort Eigenvalues and EigenVectors
idx
=
eigenvals
.
argsort
()[::
-
1
]
eigenvals
=
eigenvals
[
idx
]
eigenvecs
=
eigenvecs
[
idx
]
ell_x
,
ell_y
=
ell_tvlim
.
T
# the sqrt of the eigenvalues give the length of the semi-axes
print
(
f
"
Ellipsoid eigenvalues:
{
eigenvals
}
"
)
vec1
,
vec2
=
eigenvecs
.
T
vec1
=
vec1
*
m
.
sqrt
(
eigenvals
[
0
])
+
center
vec2
=
vec2
*
m
.
sqrt
(
eigenvals
[
1
])
+
center
polytope
=
np
.
array
([
ell_x
,
ell_y
]).
T
hull
=
scipy
.
spatial
.
ConvexHull
(
polytope
)
for
simplex
in
hull
.
simplices
:
plt
.
plot
(
polytope
[
simplex
,
0
],
polytope
[
simplex
,
1
],
'
r--
'
)
if
not
any
(
diffJac
)
==
True
:
polytope
=
np
.
array
([
ell_x
,
ell_y
]).
T
hull
=
scipy
.
spatial
.
ConvexHull
(
polytope
)
# vertices of the covex hull (might come in handy)
#vertex = np.zeros((len(hull.vertices),2))
#for i in range(len(hull.vertices)):
# vertex[i] = polytope[hull.vertices[i]]
#ax.plot(vertex[:,0], vertex[:,1], "gv")
for
simplex
in
hull
.
simplices
:
plt
.
plot
(
polytope
[
simplex
,
0
],
polytope
[
simplex
,
1
],
'
r--
'
)
# 3. Superellipsoid (rigorously this is not the most general form of a superellipsoid)
if
superBound
==
True
:
num_iter
=
1000
# coeff = np.array([1,1,1]) # these are the dimensions of the superellipsoid in joint-velocity space
coeff
=
size
# if one wants the superellipsoid to be contained in the cuboid
exp
=
4
# exp = 2 for an ellipse, exp = 4 for squircle, exp --> infty for rectangular cuboid
if
superVolume
==
True
:
vol
=
scipy
.
special
.
gamma
(
1
/
exp
+
1
)
**
param
.
nbVarX
/
scipy
.
special
.
gamma
(
param
.
nbVarX
/
exp
+
1
)
print
(
f
"
fraction of the rectangular cuboid
'
s volume:
{
vol
}
"
)
jvlim
=
sample
(
num_iter
,
coeff
,
exp
)
tvlim
=
np
.
zeros
((
num_iter
,
2
))
for
count
in
range
(
len
(
jvlim
)):
tvlim
[
count
]
=
J
@
jvlim
[
count
]
+
center
xpoints
,
ypoints
=
tvlim
.
T
# Idea: approximate whatever shape I get with an ellipsoid, so that the reasoning on the eigenvalues apply!
# Note: it does not just give the same ellipsoid as if exp = 2
tvmax
=
tvlim
[
np
.
argmax
(
np
.
linalg
.
norm
(
tvlim
-
center
,
axis
=
1
))]
cov_mat
=
np
.
cov
(
tvlim
.
T
)
eigenvals
,
eigenvecs
=
np
.
linalg
.
eig
(
cov_mat
)
idx
=
eigenvals
.
argsort
()[::
-
1
]
eigenvals
=
eigenvals
[
idx
]
eigenvecs
=
eigenvecs
[:,
idx
]
eigenvecs
=
eigenvecs
*
np
.
sqrt
(
eigenvals
)
ratio
=
np
.
linalg
.
norm
(
tvmax
-
center
)
/
m
.
sqrt
(
eigenvals
[
0
])
eigenvecs
*=
ratio
vec1
,
vec2
=
eigenvecs
.
T
[
0
],
eigenvecs
.
T
[
1
]
'''
# Manipulability matrix
Q = eigenvecs @ np.array([[eigenvals[0],0],[0,eigenvals[1]]]) @ np.linalg.inv(eigenvecs)
# Riemannian distance
A = np.linalg.inv(scipy.linalg.sqrtm(refell)) @ Q @ np.linalg.inv(scipy.linalg.sqrtm(refell))
d = np.linalg.norm(scipy.linalg.logm(A))
print(f
"
Riemannian distance: {d}
"
)
'''
print
(
f
"
Superellipsoid eigenvalues:
{
(
ratio
*
np
.
sqrt
(
eigenvals
))
**
2
}
"
)
phi
=
np
.
linspace
(
0
,
2
*
m
.
pi
,
200
)
x
=
np
.
zeros
((
len
(
phi
),
2
))
for
i
in
range
(
len
(
phi
)):
x
[
i
]
=
center
+
vec1
*
m
.
cos
(
phi
[
i
])
+
vec2
*
m
.
sin
(
phi
[
i
])
super_norms
=
np
.
linalg
.
norm
(
x
,
axis
=
1
)
if
not
any
(
diffJac
)
==
True
:
ax
.
plot
(
x
[:,
0
],
x
[:,
1
],
"
g1
"
,
label
=
"
superellipsoid
"
)
vec1
+=
center
vec2
+=
center
ax
.
plot
([
center
[
0
],
tvmax
[
0
]],
[
center
[
1
],
tvmax
[
1
]])
ax
.
plot
([
center
[
0
],
vec1
[
0
]],
[
center
[
1
],
vec1
[
1
]])
ax
.
plot
([
center
[
0
],
vec2
[
0
]],
[
center
[
1
],
vec2
[
1
]])
# Plots
showhull
=
True
# to show the convex hull of the superellipsoid
showpoints
=
False
# to show the image of all the sampled points
if
showhull
==
True
and
not
any
(
diffJac
)
==
True
:
polytope
=
np
.
array
([
xpoints
,
ypoints
]).
T
hull
=
scipy
.
spatial
.
ConvexHull
(
polytope
)
# vertices of the covex hull (might come in handy)
#vertex = np.zeros((len(hull.vertices),2))
#for i in range(len(hull.vertices)):
# vertex[i] = polytope[hull.vertices[i]]
#ax.plot(vertex[:,0], vertex[:,1], "gv")
for
simplex
in
hull
.
simplices
:
plt
.
plot
(
polytope
[
simplex
,
0
],
polytope
[
simplex
,
1
],
'
g--
'
)
if
showpoints
==
True
:
ax
.
plot
(
xpoints
,
ypoints
,
"
kx
"
)
#fig = plt.figure()
#ax2 = fig.add_subplot(projection='3d')
#ax2.scatter(cube[:,0], cube[:,1], cube[:,2], c = "blue", label = "rectangular cuboid")
#if ellBound == True:
# ax2.scatter(ell_jvlim[:,0], ell_jvlim[:,1], ell_jvlim[:,2], c = "red", label = "ellipsoid")
#
#if superBound == True:
# ax2.scatter(jvlim[:,0], jvlim[:,1], jvlim[:,2], c = "green", label = "superellipsoid")
#legend = ax2.legend(loc='upper right')
#if showedges == True:
# num_points = 50
# jvlim, tvlim = np.zeros((num_points,3)), np.zeros((num_points,2))
#
# edges = np.vstack((np.unique(cube[:,:2], axis = 0), np.unique(cube[:,1:3], axis = 0), np.unique(cube[:,0:3:2], axis = 0)))
# for edge in edges[:4]:
# for count in range(num_points):
# z = (random.random() * 2 - 1) * height
# jvlim[count] = np.array([edge[0],edge[1],z])
# tvlim[count] = J @ jvlim[count] + center
# ax2.scatter(jvlim[:,0], jvlim[:,1], jvlim[:,2], c = "blue")
# ax.plot(tvlim[:,0], tvlim[:,1], "bx")
# for edge in edges[4:8]:
# for count in range(num_points):
# x = (random.random() * 2 - 1) * length
# jvlim[count] = np.array([x,edge[0],edge[1]])
# tvlim[count] = J @ jvlim[count] + center
# ax2.scatter(jvlim[:,0], jvlim[:,1], jvlim[:,2], c = "red")
# ax.plot(tvlim[:,0], tvlim[:,1], "rx")
#
# for edge in edges[8:]:
# for count in range(num_points):
# y = (random.random() * 2 - 1) * width
# jvlim[count] = np.array([edge[0],y,edge[1]])
# tvlim[count] = J @ jvlim[count] + center
# ax2.scatter(jvlim[:,0], jvlim[:,1], jvlim[:,2], c = "green")
# ax.plot(tvlim[:,0], tvlim[:,1], "gx")
#
#ax.axis('off')
ax
.
axis
(
'
equal
'
)
#ax2.axis('equal')
#plt.title(f"Length: {length}, width: {width}, height: {height}, p = {exp}")
plt
.
show
()
This diff is collapsed.
Click to expand it.
python/LQR_probabilistic.py
0 → 100644
+
66
−
0
View file @
0052a286
import
numpy
as
np
from
math
import
factorial
import
matplotlib.pyplot
as
plt
from
scipy.linalg
import
solve_continuous_are
from
scipy.stats
import
multivariate_normal
# Parameters
# ===============================
param
=
lambda
:
None
# Lazy way to define an empty class in python
param
.
dt
=
1e-2
# Time step length
param
.
nbDeriv
=
2
# Order of the dynamical system
param
.
nbVarPos
=
2
# Number of position variable
param
.
nbVar
=
param
.
nbVarPos
*
param
.
nbDeriv
# Dimension of state vector
param
.
nbData
=
100
# Number of datapoints
param
.
rfactor
=
1e-7
# Control weight term
R
=
np
.
eye
((
param
.
nbData
-
1
)
*
param
.
nbVarPos
)
*
param
.
rfactor
# Control cost matrix
Q
=
np
.
zeros
((
param
.
nbVar
*
param
.
nbData
,
param
.
nbVar
*
param
.
nbData
))
# Task precision for augmented state
xd
=
np
.
zeros
([
param
.
nbVar
,
param
.
nbData
])
target
=
np
.
random
.
uniform
(
size
=
param
.
nbVarPos
)
xd
[:,
param
.
nbData
-
1
]
=
np
.
concatenate
((
target
,
np
.
zeros
(
param
.
nbVarPos
)))
xd
=
xd
.
T
.
flatten
()
Q
[
param
.
nbVar
*
(
param
.
nbData
-
1
):
param
.
nbVar
*
param
.
nbData
,
param
.
nbVar
*
(
param
.
nbData
-
1
):
param
.
nbVar
*
param
.
nbData
]
=
10.0
*
np
.
eye
(
param
.
nbVar
)
A1d
=
np
.
zeros
((
param
.
nbDeriv
,
param
.
nbDeriv
))
B1d
=
np
.
zeros
((
param
.
nbDeriv
,
1
))
for
i
in
range
(
param
.
nbDeriv
):
A1d
+=
np
.
diag
(
np
.
ones
(
param
.
nbDeriv
-
i
),
i
)
*
param
.
dt
**
i
*
1
/
factorial
(
i
)
B1d
[
param
.
nbDeriv
-
i
-
1
]
=
param
.
dt
**
(
i
+
1
)
*
1
/
factorial
(
i
+
1
)
A
=
np
.
eye
(
param
.
nbVar
)
A
[:
param
.
nbVar
,
:
param
.
nbVar
]
=
np
.
kron
(
A1d
,
np
.
identity
(
param
.
nbVarPos
))
B
=
np
.
zeros
((
param
.
nbVar
,
param
.
nbVarPos
))
B
[:
param
.
nbVar
]
=
np
.
kron
(
B1d
,
np
.
identity
(
param
.
nbVarPos
))
Su
=
np
.
zeros
((
param
.
nbVar
*
param
.
nbData
,
param
.
nbVarPos
*
(
param
.
nbData
-
1
)))
Sx
=
np
.
kron
(
np
.
ones
((
param
.
nbData
,
1
)),
np
.
eye
(
param
.
nbVar
,
param
.
nbVar
))
M
=
B
for
i
in
range
(
1
,
param
.
nbData
):
Sx
[
i
*
param
.
nbVar
:
param
.
nbData
*
param
.
nbVar
,:]
=
np
.
dot
(
Sx
[
i
*
param
.
nbVar
:
param
.
nbData
*
param
.
nbVar
,:],
A
)
Su
[
param
.
nbVar
*
i
:
param
.
nbVar
*
i
+
M
.
shape
[
0
],
0
:
M
.
shape
[
1
]]
=
M
M
=
np
.
hstack
((
np
.
dot
(
A
,
M
),
B
))
# [0,nb_state_var-1]
x0
=
np
.
random
.
uniform
(
size
=
param
.
nbVar
)
mean
=
Sx
@
x0
+
Su
@
np
.
linalg
.
inv
(
Su
.
T
@
Q
@
Su
+
R
)
@
Su
.
T
@
Q
@
(
xd
-
Sx
@
x0
)
cov
=
Su
@
(
Su
.
T
@
Q
@
Su
+
R
)
@
Su
.
T
trajectories
=
multivariate_normal
.
rvs
(
mean
=
mean
,
cov
=
cov
,
size
=
100
)
plt
.
figure
()
for
k
in
range
(
100
):
trajectory
=
trajectories
[
k
,
:]
trajectory
=
trajectory
.
reshape
((
param
.
nbData
,
param
.
nbVar
))
plt
.
plot
(
trajectory
[:,
0
],
trajectory
[:,
1
],
alpha
=
0.5
)
plt
.
scatter
(
x0
[
0
],
x0
[
1
],
color
=
'
green
'
,
label
=
'
Initial State
'
)
plt
.
scatter
(
target
[
0
],
target
[
1
],
color
=
'
red
'
,
label
=
'
Target State
'
)
plt
.
legend
()
plt
.
grid
()
plt
.
show
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment