Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
robotics-codes-from-scratch
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
rli
robotics-codes-from-scratch
Commits
fc4a04eb
Commit
fc4a04eb
authored
6 months ago
by
Sylvain CALINON
Browse files
Options
Downloads
Patches
Plain Diff
Example added
parent
457a3f79
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
python/IK_manipulator_manipulability.py
+381
-0
381 additions, 0 deletions
python/IK_manipulator_manipulability.py
with
381 additions
and
0 deletions
python/IK_manipulator_manipulability.py
0 → 100644
+
381
−
0
View file @
fc4a04eb
'''
Inverse kinematics with visualization of manipulability
Copyright (c) 2024 Idiap Research Institute <https://www.idiap.ch/>
Written by Sylvain Calinon <https://calinon.ch>
This file is part of RCFS <https://robotics-codes-from-scratch.github.io/>
License: GPLv3
'''
import
numpy
as
np
import
random
import
matplotlib
import
matplotlib.pyplot
as
plt
import
math
as
m
import
scipy
# Logarithmic map for R^2 x S^1 manifold
def
logmap
(
f
,
f0
):
diff
=
np
.
zeros
(
3
)
diff
[:
2
]
=
f
[:
2
]
-
f0
[:
2
]
# Position residual
diff
[
2
]
=
np
.
imag
(
np
.
log
(
np
.
exp
(
f0
[
-
1
]
*
1j
).
conj
().
T
*
np
.
exp
(
f
[
-
1
]
*
1j
).
T
)).
conj
()
# Orientation residual
return
diff
# Forward kinematics for end-effector (in robot coordinate system)
def
fkin
(
x
,
param
):
L
=
np
.
tril
(
np
.
ones
([
param
.
nbVarX
,
param
.
nbVarX
]))
f
=
np
.
stack
([
param
.
l
@
np
.
cos
(
L
@
x
),
param
.
l
@
np
.
sin
(
L
@
x
),
np
.
mod
(
np
.
sum
(
x
,
0
)
+
np
.
pi
,
2
*
np
.
pi
)
-
np
.
pi
])
# f1,f2,f3, where f3 is the orientation (single Euler angle for planar robot)
return
f
# Forward kinematics for all joints (in robot coordinate system)
def
fkin0
(
x
,
param
):
L
=
np
.
tril
(
np
.
ones
([
param
.
nbVarX
,
param
.
nbVarX
]))
f
=
np
.
vstack
([
L
@
np
.
diag
(
param
.
l
)
@
np
.
cos
(
L
@
x
),
L
@
np
.
diag
(
param
.
l
)
@
np
.
sin
(
L
@
x
)
])
f
=
np
.
hstack
([
np
.
zeros
([
2
,
1
]),
f
])
return
f
# Jacobian with analytical computation (for single time step)
def
Jkin
(
x
,
param
):
L
=
np
.
tril
(
np
.
ones
([
param
.
nbVarX
,
param
.
nbVarX
]))
J
=
np
.
vstack
([
-
np
.
sin
(
L
@
x
).
T
@
np
.
diag
(
param
.
l
)
@
L
,
np
.
cos
(
L
@
x
).
T
@
np
.
diag
(
param
.
l
)
@
L
,
np
.
ones
([
1
,
param
.
nbVarX
])
])
return
J
## Parameters
# ===============================
param
=
lambda
:
None
# Lazy way to define an empty class in python
param
.
dt
=
1e-2
# Time step length
param
.
nbData
=
50
# Number of datapoints
param
.
nbVarX
=
3
# State space dimension (x1,x2,x3)
param
.
nbVarU
=
3
# Control space dimension (dx1,dx2,dx3)
param
.
nbVarF
=
3
# Objective function dimension (position and orientation of the end-effector)
param
.
l
=
[
2
,
2
,
1
]
# Robot links lengths
fig
,
ax
=
plt
.
subplots
()
fh
=
np
.
array
([
3
,
1
,
-
np
.
pi
/
2
])
# Desired target for the end-effector (position and orientation)
x
=
-
np
.
ones
(
param
.
nbVarX
)
*
np
.
pi
/
param
.
nbVarX
# Initial robot pose
x
[
0
]
=
x
[
0
]
+
np
.
pi
## Inverse kinematics (IK)
# ===============================
ax
.
scatter
(
fh
[
0
],
fh
[
1
],
color
=
'
r
'
,
marker
=
'
.
'
,
s
=
10
**
2
)
#Plot target
for
t
in
range
(
param
.
nbData
):
f
=
fkin
(
x
,
param
)
# Forward kinematics (for end-effector)
J
=
Jkin
(
x
,
param
)
# Jacobian (for end-effector)
# x += np.linalg.pinv(J) @ (fh - f) * 10 * param.dt # Update state
x
+=
np
.
linalg
.
pinv
(
J
)
@
logmap
(
fh
,
f
)
*
10
*
param
.
dt
# Update state
f_rob
=
fkin0
(
x
,
param
)
# Forward kinematics (for all articulations, including end-effector)
ax
.
plot
(
f_rob
[
0
,:],
f_rob
[
1
,:],
color
=
str
(
1
-
t
/
param
.
nbData
),
linewidth
=
2
)
# Plot robot
### MANIPULABILITY ###
J
=
J
[:
2
,:]
center
=
np
.
array
([
f
[
0
],
f
[
1
]])
# end-effector position
length
,
width
,
height
=
1.8
,
1.5
,
1
# max joint velocities
size
=
np
.
array
([
length
,
width
,
height
])
refell
=
130
*
np
.
identity
(
2
)
# reference ellipsoid
# Choice of the Jacobian matrix
J1
=
False
J2
=
False
J3
=
False
J4
=
False
diffJac
=
[
J1
,
J2
,
J3
,
J4
]
# 1. Robot manipulator
if
J1
==
True
:
theta
=
5
*
m
.
pi
/
6
U
=
np
.
array
([[
m
.
cos
(
theta
),
-
m
.
sin
(
theta
)],[
m
.
sin
(
theta
),
m
.
cos
(
theta
)]])
J
=
U
.
T
@
J
print
(
J
)
# 2. Bounded joint-space
if
J2
==
True
:
jminlim
=
-
np
.
ones
(
param
.
nbVarX
)
jmaxlim
=
np
.
ones
(
param
.
nbVarX
)
J
=
np
.
diag
(
1
-
np
.
heaviside
(
x
-
jminlim
,
0
)
*
np
.
heaviside
(
jmaxlim
-
x
,
0
))[:
2
,:]
print
(
J
)
# 3. Bounded task-space
if
J3
==
True
:
tminlim
=
-
np
.
ones
(
2
)
tmaxlim
=
np
.
ones
(
2
)
J
=
np
.
diag
(
1
-
np
.
heaviside
(
f
[:
2
]
-
tminlim
,
0
)
*
np
.
heaviside
(
tmaxlim
-
f
[:
2
],
0
))
@
J
print
(
J
)
# 4. Object boundaries
if
J4
==
True
:
theta
=
m
.
pi
/
4
U
=
np
.
array
([[
m
.
cos
(
theta
),
-
m
.
sin
(
theta
)],[
m
.
sin
(
theta
),
m
.
cos
(
theta
)]])
tminlim
=
-
np
.
ones
(
2
)
tmaxlim
=
2
*
np
.
ones
(
2
)
J
=
np
.
diag
(
1
-
np
.
heaviside
(
U
.
T
@
(
f
[:
2
]
-
fh
[:
2
])
-
tminlim
,
0
)
*
np
.
heaviside
(
tmaxlim
-
(
U
.
T
@
(
f
[:
2
]
-
fh
[:
2
])),
0
))
@
J
print
(
J
)
# Boundaries in joint-velocity space
# 1. Rectangular cuboid
showedges
=
False
# Shows the mapping of the cube's edges
# 2. Ellipse
ellBound
=
True
# 3. Superellipsoid
superBound
=
False
superVolume
=
False
# Returns the fraction of the rectangular cuboid's volume covered by the superellipsoid
# 1. Rectangular cuboid
cube
=
np
.
zeros
((
2
**
param
.
nbVarX
,
param
.
nbVarX
))
vertex
=
np
.
zeros
(
param
.
nbVarX
)
# These two loops store the numbers 0 to 7 in binary (which can be seen as the coordinates of a cube)
for
count1
in
range
(
2
**
param
.
nbVarX
):
for
count2
in
range
(
len
(
bin
(
count1
))
-
2
):
vertex
[
-
count2
-
1
]
=
int
(
str
(
bin
(
count1
)[
-
count2
-
1
]))
cube
[
count1
]
=
vertex
# Rescaling so that the center of the cube is located at the origin
cube
=
cube
*
2
-
1
for
i
in
range
(
len
(
size
)):
cube
[:,
i
]
=
cube
[:,
i
]
*
size
[
i
]
# Computation of the manipulability polytope
polytope
=
np
.
zeros
((
2
**
param
.
nbVarX
,
2
))
for
count
in
range
(
2
**
param
.
nbVarX
):
polytope
[
count
]
=
J
@
cube
[
count
]
+
center
xpoints
=
polytope
[:,
0
]
ypoints
=
polytope
[:,
1
]
polytope
=
np
.
array
([
xpoints
,
ypoints
]).
T
if
not
any
(
diffJac
)
==
True
:
hull
=
scipy
.
spatial
.
ConvexHull
(
polytope
)
# vertices of the covex hull (might come in handy)
vertices
=
np
.
zeros
((
len
(
hull
.
vertices
),
2
))
for
i
in
range
(
len
(
hull
.
vertices
)):
vertices
[
i
]
=
polytope
[
hull
.
vertices
[
i
]]
cube_norms
=
np
.
linalg
.
norm
(
vertices
,
axis
=
1
)
for
simplex
in
hull
.
simplices
:
plt
.
plot
(
polytope
[
simplex
,
0
],
polytope
[
simplex
,
1
],
'
b--
'
)
def
norm
(
vec
,
coeff
,
exp
):
terms
=
abs
(
vec
/
coeff
)
**
exp
norm
=
sum
(
terms
)
**
(
1
/
exp
)
return
norm
def
sample
(
npoints
,
coeff
,
exp
):
vecs
=
np
.
random
.
rand
(
npoints
,
param
.
nbVarX
)
*
2
-
1
vecs
*=
size
for
count
in
range
(
len
(
vecs
)):
vecs
[
count
]
=
vecs
[
count
]
/
norm
(
vecs
[
count
],
coeff
,
exp
)
return
vecs
# 2. Ellipsoid
if
ellBound
==
True
:
num_iter
=
1000
# coeff = np.array([1,1,1]) # these are the dimensions of the superellipsoid in joint-velocity space
coeff
=
size
# if one wants the superellipsoid to be contained in the cuboid
exp
=
2
ell_jvlim
=
sample
(
num_iter
,
coeff
,
2
)
ell_tvlim
=
np
.
zeros
((
num_iter
,
2
))
for
count
in
range
(
len
(
ell_jvlim
)):
ell_tvlim
[
count
]
=
J
@
ell_jvlim
[
count
]
+
center
ell_x
,
ell_y
=
ell_tvlim
.
T
A
=
np
.
diag
(
coeff
**
2
)
Q
=
J
@
A
@
J
.
T
eigenvals
,
eigenvecs
=
np
.
linalg
.
eig
(
Q
)
# the sqrt of the eigenvalues give the length of the semi-axes
print
(
f
"
Ellipsoid eigenvalues:
{
eigenvals
}
"
)
vec1
,
vec2
=
eigenvecs
.
T
vec1
=
vec1
*
m
.
sqrt
(
eigenvals
[
0
])
+
center
vec2
=
vec2
*
m
.
sqrt
(
eigenvals
[
1
])
+
center
if
not
any
(
diffJac
)
==
True
:
polytope
=
np
.
array
([
ell_x
,
ell_y
]).
T
hull
=
scipy
.
spatial
.
ConvexHull
(
polytope
)
# vertices of the covex hull (might come in handy)
#vertex = np.zeros((len(hull.vertices),2))
#for i in range(len(hull.vertices)):
# vertex[i] = polytope[hull.vertices[i]]
#ax.plot(vertex[:,0], vertex[:,1], "gv")
for
simplex
in
hull
.
simplices
:
plt
.
plot
(
polytope
[
simplex
,
0
],
polytope
[
simplex
,
1
],
'
r--
'
)
# 3. Superellipsoid (rigorously this is not the most general form of a superellipsoid)
if
superBound
==
True
:
num_iter
=
1000
# coeff = np.array([1,1,1]) # these are the dimensions of the superellipsoid in joint-velocity space
coeff
=
size
# if one wants the superellipsoid to be contained in the cuboid
exp
=
4
# exp = 2 for an ellipse, exp = 4 for squircle, exp --> infty for rectangular cuboid
if
superVolume
==
True
:
vol
=
scipy
.
special
.
gamma
(
1
/
exp
+
1
)
**
param
.
nbVarX
/
scipy
.
special
.
gamma
(
param
.
nbVarX
/
exp
+
1
)
print
(
f
"
fraction of the rectangular cuboid
'
s volume:
{
vol
}
"
)
jvlim
=
sample
(
num_iter
,
coeff
,
exp
)
tvlim
=
np
.
zeros
((
num_iter
,
2
))
for
count
in
range
(
len
(
jvlim
)):
tvlim
[
count
]
=
J
@
jvlim
[
count
]
+
center
xpoints
,
ypoints
=
tvlim
.
T
# Idea: approximate whatever shape I get with an ellipsoid, so that the reasoning on the eigenvalues apply!
# Note: it does not just give the same ellipsoid as if exp = 2
tvmax
=
tvlim
[
np
.
argmax
(
np
.
linalg
.
norm
(
tvlim
-
center
,
axis
=
1
))]
cov_mat
=
np
.
cov
(
tvlim
.
T
)
eigenvals
,
eigenvecs
=
np
.
linalg
.
eig
(
cov_mat
)
idx
=
eigenvals
.
argsort
()[::
-
1
]
eigenvals
=
eigenvals
[
idx
]
eigenvecs
=
eigenvecs
[:,
idx
]
eigenvecs
=
eigenvecs
*
np
.
sqrt
(
eigenvals
)
ratio
=
np
.
linalg
.
norm
(
tvmax
-
center
)
/
m
.
sqrt
(
eigenvals
[
0
])
eigenvecs
*=
ratio
vec1
,
vec2
=
eigenvecs
.
T
[
0
],
eigenvecs
.
T
[
1
]
'''
# Manipulability matrix
Q = eigenvecs @ np.array([[eigenvals[0],0],[0,eigenvals[1]]]) @ np.linalg.inv(eigenvecs)
# Riemannian distance
A = np.linalg.inv(scipy.linalg.sqrtm(refell)) @ Q @ np.linalg.inv(scipy.linalg.sqrtm(refell))
d = np.linalg.norm(scipy.linalg.logm(A))
print(f
"
Riemannian distance: {d}
"
)
'''
print
(
f
"
Superellipsoid eigenvalues:
{
(
ratio
*
np
.
sqrt
(
eigenvals
))
**
2
}
"
)
phi
=
np
.
linspace
(
0
,
2
*
m
.
pi
,
200
)
x
=
np
.
zeros
((
len
(
phi
),
2
))
for
i
in
range
(
len
(
phi
)):
x
[
i
]
=
center
+
vec1
*
m
.
cos
(
phi
[
i
])
+
vec2
*
m
.
sin
(
phi
[
i
])
super_norms
=
np
.
linalg
.
norm
(
x
,
axis
=
1
)
if
not
any
(
diffJac
)
==
True
:
ax
.
plot
(
x
[:,
0
],
x
[:,
1
],
"
g1
"
,
label
=
"
superellipsoid
"
)
vec1
+=
center
vec2
+=
center
ax
.
plot
([
center
[
0
],
tvmax
[
0
]],
[
center
[
1
],
tvmax
[
1
]])
ax
.
plot
([
center
[
0
],
vec1
[
0
]],
[
center
[
1
],
vec1
[
1
]])
ax
.
plot
([
center
[
0
],
vec2
[
0
]],
[
center
[
1
],
vec2
[
1
]])
# Plots
showhull
=
True
# to show the convex hull of the superellipsoid
showpoints
=
False
# to show the image of all the sampled points
if
showhull
==
True
and
not
any
(
diffJac
)
==
True
:
polytope
=
np
.
array
([
xpoints
,
ypoints
]).
T
hull
=
scipy
.
spatial
.
ConvexHull
(
polytope
)
# vertices of the covex hull (might come in handy)
#vertex = np.zeros((len(hull.vertices),2))
#for i in range(len(hull.vertices)):
# vertex[i] = polytope[hull.vertices[i]]
#ax.plot(vertex[:,0], vertex[:,1], "gv")
for
simplex
in
hull
.
simplices
:
plt
.
plot
(
polytope
[
simplex
,
0
],
polytope
[
simplex
,
1
],
'
g--
'
)
if
showpoints
==
True
:
ax
.
plot
(
xpoints
,
ypoints
,
"
kx
"
)
#fig = plt.figure()
#ax2 = fig.add_subplot(projection='3d')
#ax2.scatter(cube[:,0], cube[:,1], cube[:,2], c = "blue", label = "rectangular cuboid")
#if ellBound == True:
# ax2.scatter(ell_jvlim[:,0], ell_jvlim[:,1], ell_jvlim[:,2], c = "red", label = "ellipsoid")
#
#if superBound == True:
# ax2.scatter(jvlim[:,0], jvlim[:,1], jvlim[:,2], c = "green", label = "superellipsoid")
#legend = ax2.legend(loc='upper right')
#if showedges == True:
# num_points = 50
# jvlim, tvlim = np.zeros((num_points,3)), np.zeros((num_points,2))
#
# edges = np.vstack((np.unique(cube[:,:2], axis = 0), np.unique(cube[:,1:3], axis = 0), np.unique(cube[:,0:3:2], axis = 0)))
# for edge in edges[:4]:
# for count in range(num_points):
# z = (random.random() * 2 - 1) * height
# jvlim[count] = np.array([edge[0],edge[1],z])
# tvlim[count] = J @ jvlim[count] + center
# ax2.scatter(jvlim[:,0], jvlim[:,1], jvlim[:,2], c = "blue")
# ax.plot(tvlim[:,0], tvlim[:,1], "bx")
# for edge in edges[4:8]:
# for count in range(num_points):
# x = (random.random() * 2 - 1) * length
# jvlim[count] = np.array([x,edge[0],edge[1]])
# tvlim[count] = J @ jvlim[count] + center
# ax2.scatter(jvlim[:,0], jvlim[:,1], jvlim[:,2], c = "red")
# ax.plot(tvlim[:,0], tvlim[:,1], "rx")
#
# for edge in edges[8:]:
# for count in range(num_points):
# y = (random.random() * 2 - 1) * width
# jvlim[count] = np.array([edge[0],y,edge[1]])
# tvlim[count] = J @ jvlim[count] + center
# ax2.scatter(jvlim[:,0], jvlim[:,1], jvlim[:,2], c = "green")
# ax.plot(tvlim[:,0], tvlim[:,1], "gx")
#
#ax.axis('off')
ax
.
axis
(
'
equal
'
)
#ax2.axis('equal')
#plt.title(f"Length: {length}, width: {width}, height: {height}, p = {exp}")
plt
.
show
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment