Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
robotics-codes-from-scratch
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
rli
robotics-codes-from-scratch
Commits
5270b272
Commit
5270b272
authored
3 years ago
by
Jérémy MACEIRAS
Browse files
Options
Downloads
Patches
Plain Diff
[matlab] Added LQR_infHor example
parent
5aade114
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
matlab/LQR_infHor.m
+175
-0
175 additions, 0 deletions
matlab/LQR_infHor.m
with
175 additions
and
0 deletions
matlab/LQR_infHor.m
0 → 100644
+
175
−
0
View file @
5270b272
%% Point-mass LQR with infinite horizon
%%
%% Copyright (c) 2021 Idiap Research Institute, http://www.idiap.ch/
%% Written by Sylvain Calinon <https://calinon.ch>
%%
%% This file is part of RCFS.
%%
%% RCFS is free software: you can redistribute it and/or modify
%% it under the terms of the GNU General Public License version 3 as
%% published by the Free Software Foundation.
%%
%% RCFS is distributed in the hope that it will be useful,
%% but WITHOUT ANY WARRANTY; without even the implied warranty of
%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
%% GNU General Public License for more details.
%%
%% You should have received a copy of the GNU General Public License
%% along with RCFS. If not, see <http://www.gnu.org/licenses/>.
function
LQR_infHor
%% Parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
param
.
nbData
=
200
;
%Number of datapoints
param
.
nbRepros
=
4
;
%Number of reproductions
param
.
param
.
nbVarPos
=
2
;
%Dimension of position data (here: x1,x2)
param
.
nbDeriv
=
2
;
%Number of static & dynamic features (D=2 for [x,dx])
param
.
nbVar
=
param
.
param
.
nbVarPos
*
param
.
nbDeriv
;
%Dimension of state vector in the tangent space
param
.
dt
=
1E-2
;
%Time step duration
param
.
rfactor
=
4E-2
;
%Control cost in LQR
%Control cost matrix
R
=
eye
(
param
.
param
.
nbVarPos
)
*
param
.
rfactor
;
%Target and desired covariance
param
.
Mu
=
[
randn
(
param
.
param
.
nbVarPos
,
1
);
zeros
(
param
.
param
.
nbVarPos
*
(
param
.
nbDeriv
-
1
),
1
)];
[
Ar
,
~
]
=
qr
(
randn
(
param
.
param
.
nbVarPos
));
xCov
=
Ar
*
diag
(
rand
(
param
.
param
.
nbVarPos
,
1
))
*
Ar
'
*
1E-1
%% Discrete dynamical System settings
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A1d
=
zeros
(
param
.
nbDeriv
);
for
i
=
0
:
param
.
nbDeriv
-
1
A1d
=
A1d
+
diag
(
ones
(
param
.
nbDeriv
-
i
,
1
),
i
)
*
param
.
dt
^
i
*
1
/
factorial
(
i
);
%Discrete 1D
end
B1d
=
zeros
(
param
.
nbDeriv
,
1
);
for
i
=
1
:
param
.
nbDeriv
B1d
(
param
.
nbDeriv
-
i
+
1
)
=
param
.
dt
^
i
*
1
/
factorial
(
i
);
%Discrete 1D
end
A
=
kron
(
A1d
,
eye
(
param
.
param
.
nbVarPos
));
%Discrete nD
B
=
kron
(
B1d
,
eye
(
param
.
param
.
nbVarPos
));
%Discrete nD
%% discrete LQR with infinite horizon
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Q
=
blkdiag
(
inv
(
xCov
),
zeros
(
param
.
param
.
nbVarPos
*
(
param
.
nbDeriv
-
1
)));
%Precision matrix
P
=
solveAlgebraicRiccati_eig_discrete
(
A
,
B
*
(
R
\
B
'), (Q+Q'
)/
2
);
L
=
(
B
' * P * B + R) \ B'
*
P
*
A
;
%Feedback gain (discrete version)
%Test ratio between kp and kv
if
param
.
nbDeriv
>
1
kp
=
eigs
(
L
(:,
1
:
param
.
param
.
nbVarPos
));
kv
=
eigs
(
L
(:,
param
.
param
.
nbVarPos
+
1
:
end
));
ratio
=
kv
.
/
(
2
*
kp
.^.
5
)
end
for
n
=
1
:
param
.
nbRepros
x
=
[
ones
(
param
.
param
.
nbVarPos
,
1
)
+
randn
(
param
.
param
.
nbVarPos
,
1
)
*
5E-1
;
zeros
(
param
.
param
.
nbVarPos
*
(
param
.
nbDeriv
-
1
),
1
)];
for
t
=
1
:
param
.
nbData
r
(
n
)
.
Data
(:,
t
)
=
x
;
u
=
L
*
(
param
.
Mu
-
x
);
%Compute acceleration (with only feedback terms)
x
=
A
*
x
+
B
*
u
;
end
end
%% Plots
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure
(
'position'
,[
10
,
10
,
650
,
650
]);
hold
on
;
axis
off
;
grid
off
;
plotGMM
(
param
.
Mu
(
1
:
2
),
xCov
(
1
:
2
,
1
:
2
),
[
.
8
0
0
],
.
3
);
for
n
=
1
:
param
.
nbRepros
plot
(
r
(
n
)
.
Data
(
1
,:),
r
(
n
)
.
Data
(
2
,:),
'-'
,
'linewidth'
,
1
,
'color'
,[
0
0
0
]);
end
%plot(param.Mu(1,1), param.Mu(2,1), 'r.','markersize',80);
axis
equal
;
%print('-dpng','graphs/demo_MPC_infHor01.png');
%% Timeline plot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
labList
=
{
'x_1'
,
'x_2'
,
'dx_1'
,
'dx_2'
,
'ddx_1'
,
'ddx_2'
};
figure
(
'position'
,[
720
10
600
650
],
'color'
,[
1
1
1
]);
for
j
=
1
:
param
.
nbVar
subplot
(
param
.
nbVar
+
1
,
1
,
j
);
hold
on
;
for
n
=
1
:
param
.
nbRepros
plot
(
r
(
n
)
.
Data
(
j
,:),
'-'
,
'linewidth'
,
1
,
'color'
,[
0
0
0
]);
end
if
j
<
7
ylabel
(
labList
{
j
},
'fontsize'
,
14
,
'interpreter'
,
'latex'
);
end
end
%Speed profile
if
param
.
nbDeriv
>
1
subplot
(
param
.
nbVar
+
1
,
1
,
param
.
nbVar
+
1
);
hold
on
;
for
n
=
1
:
param
.
nbRepros
sp
=
sqrt
(
r
(
n
)
.
Data
(
3
,:)
.^
2
+
r
(
n
)
.
Data
(
4
,:)
.^
2
);
plot
(
sp
,
'-'
,
'linewidth'
,
1
,
'color'
,[
0
0
0
]);
end
ylabel
(
'|dx|'
,
'fontsize'
,
14
);
xlabel
(
't'
,
'fontsize'
,
14
);
end
%print('-dpng','graphs/demo_LQR_infHor01.png');
pause
;
close
all
;
end
%%%%%%%%%%%%%%%%%%%%%%
% Solve Algebraic Ricatty discrete equation
function
X
=
solveAlgebraicRiccati_eig_discrete
(
A
,
G
,
Q
)
n
=
size
(
A
,
1
);
%Symplectic matrix (see https://en.wikipedia.org/wiki/Algebraic_Riccati_equation)
%Z = [A+B*(R\B')/A'*Q, -B*(R\B')/A'; -A'\Q, A'^-1];
Z
=
[
A
+
G
/
A
'*Q, -G/A'
;
-
A
'\Q, inv(A'
)];
%Since Z is symplectic, if it does not have any eigenvalues on the unit circle,
%then exactly half of its eigenvalues are inside the unit circle.
[
V
,
D
]
=
eig
(
Z
);
U
=
[];
for
j
=
1
:
2
*
n
if
norm
(
D
(
j
,
j
))
<
1
%inside unit circle
U
=
[
U
V
(:,
j
)];
end
end
X
=
real
(
U
(
n
+
1
:
end
,:)
/
U
(
1
:
n
,:));
end
%%%%%%%%%%%%%%%%%%%%%%
% Plot a 2D Mixture of Gaussians
function
[
h
,
X
]
=
plotGMM
(
Mu
,
Sigma
,
color
,
valAlpha
)
nbStates
=
size
(
Mu
,
2
);
nbDrawingSeg
=
100
;
darkcolor
=
color
*
.
7
;
%max(color-0.5,0);
t
=
linspace
(
-
pi
,
pi
,
nbDrawingSeg
);
if
nargin
<
4
valAlpha
=
1
;
end
h
=
[];
X
=
zeros
(
2
,
nbDrawingSeg
,
nbStates
);
for
i
=
1
:
nbStates
[
V
,
D
]
=
eig
(
Sigma
(:,:,
i
));
R
=
real
(
V
*
D
.^.
5
);
X
(:,:,
i
)
=
R
*
[
cos
(
t
);
sin
(
t
)]
+
repmat
(
Mu
(:,
i
),
1
,
nbDrawingSeg
);
if
nargin
>
3
%Plot with alpha transparency
h
=
[
h
patch
(
X
(
1
,:,
i
),
X
(
2
,:,
i
),
color
,
'lineWidth'
,
1
,
'EdgeColor'
,
color
,
'facealpha'
,
valAlpha
,
'edgealpha'
,
valAlpha
)];
h
=
[
h
plot
(
Mu
(
1
,:),
Mu
(
2
,:),
'.'
,
'markersize'
,
10
,
'color'
,
darkcolor
)];
else
%Plot without transparency
h
=
[
h
patch
(
X
(
1
,:,
i
),
X
(
2
,:,
i
),
color
,
'lineWidth'
,
1
,
'EdgeColor'
,
darkcolor
)];
h
=
[
h
plot
(
Mu
(
1
,:),
Mu
(
2
,:),
'.'
,
'markersize'
,
10
,
'color'
,
darkcolor
)];
end
end
end
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment