Skip to content
Snippets Groups Projects
Commit cde5b963 authored by Sylvain CALINON's avatar Sylvain CALINON
Browse files

Updated list of examples

parent ba8065be
No related branches found
No related tags found
No related merge requests found
...@@ -41,7 +41,7 @@ https://gitlab.idiap.ch/rli/pbdlib_gui ...@@ -41,7 +41,7 @@ https://gitlab.idiap.ch/rli/pbdlib_gui
### Test ### Test
``` ```
cd build/examples cd examples
./test_gmm ./test_gmm
``` ```
...@@ -72,3 +72,160 @@ In order to link your program with PbDLib and Armadillo, add the following comma ...@@ -72,3 +72,160 @@ In order to link your program with PbDLib and Armadillo, add the following comma
find_library(ARMADILLO_LIBRARIES armadillo) find_library(ARMADILLO_LIBRARIES armadillo)
target_link_libraries(yourProgram pbd ${ARMADILLO_LIBRARIES}) target_link_libraries(yourProgram pbd ${ARMADILLO_LIBRARIES})
``` ```
### References
Did you find PbDlib useful for your research? Please acknowledge the authors in any academic publications that used parts of these codes.
<br><br>
[1] Tutorial (GMM, TP-GMM, MFA, MPPCA, GMR, LWR, GPR, MPC, LQR, trajGMM):
```
@article{Calinon16JIST,
author="Calinon, S.",
title="A Tutorial on Task-Parameterized Movement Learning and Retrieval",
journal="Intelligent Service Robotics",
publisher="Springer Berlin Heidelberg",
year="2016",
volume="9",
number="1",
pages="1--29",
doi="10.1007/s11370-015-0187-9",
}
```
[2] HMM, HSMM:
```
@article{Rozo16Frontiers,
author="Rozo, L. and Silv\'erio, J. and Calinon, S. and Caldwell, D. G.",
title="Learning Controllers for Reactive and Proactive Behaviors in Human-Robot Collaboration",
journal="Frontiers in Robotics and {AI}",
year="2016",
month="June",
volume="3",
number="30",
pages="1--11",
doi="10.3389/frobt.2016.00030"
}
```
[3] Riemannian manifolds (S2,S3):
```
@article{Zeestraten17RAL,
author="Zeestraten, M. J. A. and Havoutis, I. and Silv\'erio, J. and Calinon, S. and Caldwell, D. G.",
title="An Approach for Imitation Learning on {R}iemannian Manifolds",
journal="{IEEE} Robotics and Automation Letters ({RA-L})",
year="2017",
month="June",
volume="2",
number="3",
pages="1240--1247"
doi="10.1109/LRA.2017.2657001",
}
```
[4] Riemannian manifolds (S+):
```
@inproceedings{Jaquier17IROS,
author="Jaquier, N. and Calinon, S.",
title="Gaussian Mixture Regression on Symmetric Positive Definite Matrices Manifolds: Application to Wrist Motion Estimation with {sEMG}",
booktitle="Proc. {IEEE/RSJ} Intl Conf. on Intelligent Robots and Systems ({IROS})",
year="2017",
month="September",
address="Vancouver, Canada",
pages=""
}
```
[5] Semi-tied GMM:
```
@article{Tanwani16RAL,
author="Tanwani, A. K. and Calinon, S.",
title="Learning Robot Manipulation Tasks with Task-Parameterized Semi-Tied Hidden Semi-{M}arkov Model",
journal="{IEEE} Robotics and Automation Letters ({RA-L})",
year="2016",
month="January",
volume="1",
number="1",
pages="235--242",
doi="10.1109/LRA.2016.2517825"
}
```
[6] DP-means:
```
@article{Bruno17AURO,
author="Bruno, D. and Calinon, S. and Caldwell, D. G.",
title="Learning Autonomous Behaviours for the Body of a Flexible Surgical Robot",
journal="Autonomous Robots",
year="2017",
month="February",
volume="41",
number="2",
pages="333--347",
doi="10.1007/s10514-016-9544-6"
}
```
[7] Shared control, adaptive teleoperation:
```
@inproceedings{Havoutis17ICRA,
author="Havoutis, I. and Calinon, S.",
title="Supervisory teleoperation with online learning and optimal control",
booktitle=ICRA,
year="2017",
month="May-June",
address="Singapore",
pages="1534--1540"
}
```
[8] Calligraphy, graffiti, handwriting movement generation:
```
@inproceedings{Berio17GI,
author="Berio, D. and Calinon, S. and Fol Leymarie, F.",
title="Generating Calligraphic Trajectories with Model Predictive Control",
booktitle="Proc. 43rd Conf. on Graphics Interface",
year="2017",
month="May",
address="Edmonton, AL, Canada",
pages=""
}
```
[9] Adaptive assistance:
```
@article{Pignat17RAS,
author="Pignat, E. and Calinon, S.",
title="Learning adaptive dressing assistance from human demonstration",
journal="Robotics and Autonomous Systems",
year="2017",
month="July",
volume="93",
number="",
pages="61--75",
doi="10.1016/j.robot.2017.03.017",
}
```
### List of examples
This project will build a number of executables in the 'examples' folder, as listed in the table below.
| Filename | ref. | Description |
|----------|------|-------------|
| test_adhsmm.cpp | [2] | Computation of the forward variable of an ADHSMM for a given external input that modifies the duration probabilities of the model |
| test_gmm.cpp | [1] | Gaussian mixture model (GMM) |
| test_gmr*.cpp | [1] | Gaussian mixture regression (GMR) |
| test_hsmm*.cpp | [2] | Hidden semi-Markov model (HSMM) |
| test_lqr.cpp | [1] | Linear quadratic regulator (LQR) with either finite or infinite horizons, continuous version, iterative computation |
| test_lqr_discrete.cpp | [1] | Discrete version of LQR |
| test_mpc.cpp | [1] | Model predictive control (MPC), batch LQR computation |
| test_onlineDP.cpp | [6] | DP-means for online estimation of GMM parameters |
| test_quaternions.cpp | [3] | Orientations as unit quaternions |
| test_rewardWeightedRefinement.cpp | [] | EM-based stochasitc optimization |
| test_tpgmm*.cpp | [1] | Task-parameterized Gaussian mixture model (TP-GMM) |
| test_tphsmm.cpp | [1,2] | Task-parameterized hidden semi-Markov model (TP-HSMM) |
| test_trajGMM.cpp | [1] | GMM with dynamic features (trajectory GMM) |
| test_trajMPC*.cpp | [] | Generation of trajectory distributions with MPC |
/**
Copyright (C) 2014, Davide De Tommaso, Milad Malekzadeh, Sylvain Calinon
This file is part of PbDLib.
PbDLib is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
PbDLib is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PbDLib. If not, see <http://www.gnu.org/licenses/>.
*/
/*! \file repro_gmr.cpp
\brief Learning GMM model and testing reproductions with GMR
Learning a GMM model from a demonstration saved in the file data_txyz.txt and after
\author Davide De Tommaso, Milad Malekzadeh, Sylvain Calinon
\bug No known bugs.
*/
#include "pbdlib/gmm.h"
#include "pbdlib/gmr.h"
#include <sstream>
#define nbStates 3
#define nbVar 4
#define nbData 200
using namespace pbdlib;
int main(int argc, char **argv)
{
return 0;
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment