Skip to content
Snippets Groups Projects
Commit b7a6143f authored by Guillaume HEUSCH's avatar Guillaume HEUSCH
Browse files

[preprocessor] added FaceCropAlign preprocessor for consistency

parent e61d7bd2
No related branches found
No related tags found
1 merge request!53WIP: rPPG as features for PAD
Pipeline #
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Tue May 30 14:11:16 2017
@author: Olegs Nikisins
"""
# ==============================================================================
# Import what is needed here:
from bob.bio.base.preprocessor import Preprocessor
import numpy as np
import bob.ip.color
import bob.ip.base
import importlib
# ==============================================================================
def auto_norm_image(data, annotations, n_sigma=3.0, norm_method='MAD'):
"""
Normalizes a single channel image to range 0-255, using the data distribution
Expects single channel images
**method: Gaussian , MAD, MINMAX
**n_sigma: The range which is normalized
"""
face = data[annotations['topleft'][0]:annotations['bottomright'][0],
annotations['topleft'][1]:annotations['bottomright'][1]]
face = face.astype('float')
data = data.astype('float')
assert(len(data.shape)==2)
face_c = np.ma.array(face).compressed()
# Avoiding zeros from flat field in thermal and holes in depth
face_c=face_c[face_c>1.0]
if norm_method=='STD':
mu = np.mean(face_c)
std = np.std(face_c)
data_n=((data-mu+n_sigma*std)/(2.0*n_sigma*std))*255.0
if norm_method=='MAD':
med = np.median(face_c)
mad = np.median(np.abs(face_c - med))
data_n = ((data-med+n_sigma*mad)/(2.0*n_sigma*mad))*255.0
if norm_method=='MINMAX':
t_min = np.min(face_c)
t_max = np.max(face_c)
data_n = ((data-t_min)/(t_max-t_min))*255.0
# Clamping to 0-255
data_n=np.maximum(data_n,0)
data_n=np.minimum(data_n,255)
data_n = data_n.astype('uint8')
return data_n
# ==============================================================================
def get_eye_pos(lm):
"""
This function returns the locations of left and right eyes
**Parameters:**
``lm`` : :py:class:`numpy.ndarray`
A numpy array containing the coordinates of facial landmarks, (68X2)
**Returns:**
``reye``
A tuple containing the location of right eye,
``leye``
A tuple containing the location of left eye
"""
# Mean position of eye corners as eye centers , casted to int()
left_eye_t = (lm[36, :] + lm[39, :]) / 2.0
right_eye_t = (lm[42, :] + lm[45, :]) / 2.0
right_eye = (int(left_eye_t[1]), int(left_eye_t[0]))
left_eye = (int(right_eye_t[1]), int(right_eye_t[0]))
return right_eye, left_eye
# ==============================================================================
def detect_face_landmarks_in_image(image, method="dlib"):
"""
This function detects a face in the input image. Two oprions for face detector , but landmark detector is always the same
**Parameters:**
``image`` : 3D :py:class:`numpy.ndarray`
A color image to detect the face in.
``method`` : :py:class:`str`
A package to be used for face detection. Options supported by this
package: "dlib" (dlib is a dependency of this package). If bob.ip.mtcnn
is installed in your system you can use it as-well (bob.ip.mtcnn is NOT
a dependency of this package).
**Returns:**
``annotations`` : :py:class:`dict`
A dictionary containing annotations of the face bounding box, eye locations and facial landmarks.
Dictionary must be as follows ``{'topleft': (row, col), 'bottomright': (row, col), 'leye': (row, col), 'reye': (row, col), 'landmarks': [(col1,row1), (col2,row2), ...]}``.
If no annotations found an empty dictionary is returned.
Where (rowK,colK) is the location of Kth facial landmark (K=0,...,67).
"""
### Face detector
try:
face_detection_module = importlib.import_module("bob.ip." + method)
except ImportError:
print("No module named bob.ip." + method +
" trying to use default method!")
try:
face_detection_module = importlib.import_module("bob.ip.dlib")
method = "dlib"
except ImportError:
raise ImportError("No module named bob.ip.dlib")
if not hasattr(face_detection_module, 'FaceDetector'):
raise AttributeError(
"bob.ip." + method + " module has no attribute FaceDetector!")
#### Landmark detector
try:
landmark_detection_module = importlib.import_module(
"bob.ip.facelandmarks")
except ImportError:
raise ImportError("No module named bob.ip.facelandmarks!!")
if not hasattr(landmark_detection_module,
'detect_landmarks_on_boundingbox'):
raise AttributeError(
"bob.ip.facelandmarksmodule has no attribute detect_landmarks_on_boundingbox!"
)
face_detector = face_detection_module.FaceDetector()
data = face_detector.detect_single_face(image)
annotations = {}
if (data is not None) and (not all([x is None for x in data])):
bounding_box = data[0]
bounding_box_scaled = bounding_box.scale(0.95, True) # is ok for dlib
lm = landmark_detection_module.detect_landmarks_on_boundingbox(
image, bounding_box_scaled)
if lm is not None:
lm = np.array(lm)
lm = np.vstack((lm[:, 1], lm[:, 0])).T
#print("LM",lm)
right_eye, left_eye = get_eye_pos(lm)
points = []
for i in range(lm.shape[0]):
points.append((int(lm[i, 0]), int(lm[i, 1])))
annotations['topleft'] = bounding_box.topleft
annotations['bottomright'] = bounding_box.bottomright
annotations['landmarks'] = points
annotations['leye'] = left_eye
annotations['reye'] = right_eye
return annotations
# ==========================================================================
def normalize_image_size_in_grayscale(image, annotations,
face_size, use_face_alignment):
"""
This function crops the face in the input Gray-scale image given annotations
defining the face bounding box, and eye positions.
The size of the face is also normalized to the pre-defined dimensions.
Two normalization options are available, which are controlled by
``use_face_alignment`` flag, see below.
**Parameters:**
``image`` : 2D :py:class:`numpy.ndarray`
Gray-scale input image.
``annotations`` : :py:class:`dict`
A dictionary containing annotations of the face bounding box,
eye locations and facial landmarks.
Dictionary must be as follows: ``{'topleft': (row, col), 'bottomright': (row, col),
'leye': (row, col), 'reye': (row, col)}``.
``face_size`` : :py:class:`int`
The size of the face after normalization.
``use_face_alignment`` : :py:class:`bool`
If ``False``, the re-sizing from this publication is used:
"On the Effectiveness of Local Binary Patterns in Face Anti-spoofing"
If ``True`` the facial image is both re-sized and aligned using
positions of the eyes, which are given in the annotations.
**Returns:**
``normbbx`` : 2D :py:class:`numpy.ndarray`
An image of the cropped face of the size (face_size, face_size).
"""
if use_face_alignment:
face_eyes_norm = bob.ip.base.FaceEyesNorm(
eyes_distance=((face_size + 1) / 2.),
crop_size=(face_size, face_size),
eyes_center=(face_size / 4., (face_size - 0.5) / 2.))
right_eye, left_eye = annotations['reye'], annotations['leye']
normalized_image = face_eyes_norm( image, right_eye = right_eye, left_eye = left_eye )
normbbx=normalized_image.astype('uint8')
else:
cutframe = image[annotations['topleft'][0]:annotations['bottomright'][
0], annotations['topleft'][1]:annotations['bottomright'][1]]
tempbbx = np.ndarray((face_size, face_size), 'float64')
normbbx = np.ndarray((face_size, face_size), 'uint8')
bob.ip.base.scale(cutframe, tempbbx) # normalization
tempbbx_ = tempbbx + 0.5
tempbbx_ = np.floor(tempbbx_)
normbbx = np.cast['uint8'](tempbbx_)
return normbbx
# ==========================================================================
def normalize_image_size(image, annotations, face_size,
rgb_output_flag, use_face_alignment):
"""
This function crops the face in the input image given annotations defining
the face bounding box. The size of the face is also normalized to the
pre-defined dimensions. For RGB inputs it is possible to return both
color and gray-scale outputs. This option is controlled by ``rgb_output_flag``.
Two normalization options are available, which are controlled by
``use_face_alignment`` flag, see below.
**Parameters:**
``image`` : 2D or 3D :py:class:`numpy.ndarray`
Input image (RGB or gray-scale).
``annotations`` : :py:class:`dict`
A dictionary containing annotations of the face bounding box,
eye locations and facial landmarks.
Dictionary must be as follows: ``{'topleft': (row, col), 'bottomright': (row, col),
'leye': (row, col), 'reye': (row, col)}``.
``face_size`` : :py:class:`int`
The size of the face after normalization.
``rgb_output_flag`` : :py:class:`bool`
Return RGB cropped face if ``True``, otherwise a gray-scale image is
returned. Default: ``False``.
``use_face_alignment`` : :py:class:`bool`
If ``False``, the facial image re-sizing from this publication is used:
"On the Effectiveness of Local Binary Patterns in Face Anti-spoofing"
If ``True`` the facial image is both re-sized, and aligned, using
positions of the eyes, which are given in the annotations.
**Returns:**
``face`` : 2D or 3D :py:class:`numpy.ndarray`
An image of the cropped face of the size (face_size, face_size),
RGB 3D or gray-scale 2D.
"""
if len(image.shape) == 3:
if not (rgb_output_flag):
image = bob.ip.color.rgb_to_gray(image)
if len(image.shape) == 2:
image = [image] # make gray-scale image an iterable
result = []
for image_channel in image: # for all color channels in the input image
cropped_face = normalize_image_size_in_grayscale(
image_channel, annotations, face_size, use_face_alignment)
result.append(cropped_face)
face = np.stack(result, axis=0)
face = np.squeeze(face) # squeeze 1-st dimension for gray-scale images
return face
# ==========================================================================
class FaceCropAlign(Preprocessor):
"""
This function is designed to crop / size-normalize / align face
in the input image.
The size of the output face is ``3 x face_size x face_size`` pixels, if
``rgb_output_flag = True``, or ``face_size x face_size`` if
``rgb_output_flag = False``.
The face can also be aligned using positions of the eyes, only when
``use_face_alignment = True`` and ``face_detection_method is not None``.
Both input annotations, and automatically determined are supported.
If ``face_detection_method is not None``, the annotations returned by
face detector will be used in the cropping.
Currently supported face detectors are listed in
``supported_face_detection_method`` argument of this class.
If ``face_detection_method is None`` (Default), the input annotations are
used for cropping.
A few quality checks are supported in this function.
The quality checks are controlled by these arguments:
``max_image_size``, ``min_face_size``. More details below.
Note: ``max_image_size`` is only supported when
``face_detection_method is not None``.
**Parameters:**
``face_size`` : :py:class:`int`
The size of the face after normalization.
``rgb_output_flag`` : :py:class:`bool`
Return RGB cropped face if ``True``, otherwise a gray-scale image is
returned.
``use_face_alignment`` : :py:class:`bool`
If set to ``True`` the face will be aligned aligned,
using the facial landmarks detected locally.
Works only when ``face_detection_method is not None``.
``max_image_size`` : :py:class:`int`
The maximum size of the image to be processed.
``max_image_size`` is only supported when
``face_detection_method is not None``.
Default: ``None``.
``face_detection_method`` : :py:class:`str`
A package to be used for face detection and landmark detection.
Options supported by this class:
"dlib" and "mtcnn", which are listed in
``self.supported_face_detection_method`` argument.
Default: ``None``.
``min_face_size`` : :py:class:`int`
The minimal size of the face in pixels to be processed.
Default: None.
"""
# ==========================================================================
def __init__(self, face_size,
rgb_output_flag,
use_face_alignment,
max_image_size=None,
face_detection_method=None,
min_face_size=None,
normalization_function=None,
normalization_function_kwargs = None):
Preprocessor.__init__(self, face_size=face_size,
rgb_output_flag=rgb_output_flag,
use_face_alignment=use_face_alignment,
max_image_size=max_image_size,
face_detection_method=face_detection_method,
min_face_size=min_face_size,
normalization_function=normalization_function,
normalization_function_kwargs = normalization_function_kwargs)
self.face_size = face_size
self.rgb_output_flag = rgb_output_flag
self.use_face_alignment = use_face_alignment
self.max_image_size = max_image_size
self.face_detection_method = face_detection_method
self.min_face_size = min_face_size
self.normalization_function = normalization_function
self.normalization_function_kwargs = normalization_function_kwargs
self.supported_face_detection_method = ["dlib", "mtcnn"]
if self.face_detection_method is not None:
if self.face_detection_method not in self.supported_face_detection_method:
raise ValueError('The {0} face detection method is not supported by this class. '
'Currently supported face detectors are: bob.ip.{1}, bob.ip.{2}'.
format(face_detection_method, self.supported_face_detection_method[0], self.supported_face_detection_method[1]))
# ==========================================================================
def __call__(self, image, annotations=None):
"""
This function is designed to crop / size-normalize / align face
in the input image.
The size of the output face is ``3 x face_size x face_size`` pixels, if
``rgb_output_flag = True``, or ``face_size x face_size`` if
``rgb_output_flag = False``.
The face can also be aligned using positions of the eyes, only when
``use_face_alignment = True`` and ``face_detection_method is not None``.
Both input annotations, and automatically determined are supported.
If ``face_detection_method is not None``, the annotations returned by
face detector will be used in the cropping.
Currently supported face detectors are listed in
``supported_face_detection_method`` argument of this class.
If ``face_detection_method is None`` (Default), the input annotations are
used for cropping.
A few quality checks are supported in this function.
The quality checks are controlled by these arguments:
``max_image_size``, ``min_face_size``. More details below.
Note: ``max_image_size`` is only supported when
``face_detection_method is not None``.
**Parameters:**
``image`` : 2D or 3D :py:class:`numpy.ndarray`
Input image (RGB or gray-scale) or None.
``annotations`` : :py:class:`dict` or None
A dictionary containing annotations of the face bounding box.
Dictionary must be as follows:
``{'topleft': (row, col), 'bottomright': (row, col)}``
Default: None .
**Returns:**
``norm_face_image`` : 2D or 3D :py:class:`numpy.ndarray` or None
An image of the cropped / aligned face, of the size:
(self.face_size, self.face_size), RGB 3D or gray-scale 2D.
"""
if self.face_detection_method is not None:
if self.max_image_size is not None: # max_image_size = 1920, for example
if np.max(image.shape) > self.max_image_size: # quality check
return None
try:
annotations = detect_face_landmarks_in_image(image=image,
method=self.face_detection_method)
except:
return None
if not annotations: # if empty dictionary is returned
return None
if annotations is None: # annotations are missing for this image
return None
if self.min_face_size is not None: # quality check
# size of the face
original_face_size = np.min(
np.array(annotations['bottomright']) -
np.array(annotations['topleft']))
if original_face_size < self.min_face_size: # check if face size is above the threshold
return None
if self.normalization_function is not None:
image = self.normalization_function(image, annotations, **self.normalization_function_kwargs)
norm_face_image = normalize_image_size(image=image,
annotations=annotations,
face_size=self.face_size,
rgb_output_flag=self.rgb_output_flag,
use_face_alignment=self.use_face_alignment)
return norm_face_image
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment