diff --git a/bob/pad/face/preprocessor/FaceCropAlign.py b/bob/pad/face/preprocessor/FaceCropAlign.py
new file mode 100644
index 0000000000000000000000000000000000000000..a134ea1b8cda5e330e773f1f0050b65d776a97f2
--- /dev/null
+++ b/bob/pad/face/preprocessor/FaceCropAlign.py
@@ -0,0 +1,542 @@
+#!/usr/bin/env python2
+# -*- coding: utf-8 -*-
+"""
+Created on Tue May 30 14:11:16 2017
+
+@author: Olegs Nikisins
+"""
+
+# ==============================================================================
+# Import what is needed here:
+
+from bob.bio.base.preprocessor import Preprocessor
+
+import numpy as np
+
+import bob.ip.color
+
+import bob.ip.base
+
+import importlib
+
+
+# ==============================================================================
+def auto_norm_image(data, annotations, n_sigma=3.0, norm_method='MAD'):
+    """
+    Normalizes a single channel image to range 0-255, using the data distribution
+    Expects single channel images
+
+    **method: Gaussian , MAD, MINMAX
+    **n_sigma: The range which is normalized
+
+    """
+
+    face = data[annotations['topleft'][0]:annotations['bottomright'][0],
+                 annotations['topleft'][1]:annotations['bottomright'][1]]
+
+    face = face.astype('float')
+    data = data.astype('float')
+
+    assert(len(data.shape)==2)
+
+    face_c = np.ma.array(face).compressed()
+    # Avoiding zeros from flat field in thermal and holes in depth
+
+    face_c=face_c[face_c>1.0]
+
+    if norm_method=='STD':
+
+        mu = np.mean(face_c)
+        std = np.std(face_c)
+
+        data_n=((data-mu+n_sigma*std)/(2.0*n_sigma*std))*255.0
+
+
+    if norm_method=='MAD':
+
+        med = np.median(face_c)
+        mad = np.median(np.abs(face_c - med))
+
+        data_n = ((data-med+n_sigma*mad)/(2.0*n_sigma*mad))*255.0
+
+
+    if norm_method=='MINMAX':
+
+        t_min = np.min(face_c)
+        t_max = np.max(face_c)
+
+        data_n = ((data-t_min)/(t_max-t_min))*255.0
+
+
+    # Clamping to 0-255
+    data_n=np.maximum(data_n,0)
+    data_n=np.minimum(data_n,255)
+
+    data_n = data_n.astype('uint8')
+
+    return data_n
+
+
+# ==============================================================================
+def get_eye_pos(lm):
+    """
+    This function returns the locations of left and right eyes
+
+    **Parameters:**
+
+    ``lm`` : :py:class:`numpy.ndarray`
+        A numpy array containing the coordinates of facial landmarks, (68X2)
+
+    **Returns:**
+
+    ``reye``
+        A tuple containing the location of right eye,
+
+    ``leye``
+        A tuple containing the location of left eye
+
+    """
+
+    # Mean position of eye corners as eye centers , casted to int()
+
+    left_eye_t = (lm[36, :] + lm[39, :]) / 2.0
+    right_eye_t = (lm[42, :] + lm[45, :]) / 2.0
+
+    right_eye = (int(left_eye_t[1]), int(left_eye_t[0]))
+    left_eye = (int(right_eye_t[1]), int(right_eye_t[0]))
+
+    return right_eye, left_eye
+
+
+# ==============================================================================
+def detect_face_landmarks_in_image(image, method="dlib"):
+    """
+    This function detects a face in the input image. Two oprions for face detector , but landmark detector is always the same
+
+    **Parameters:**
+
+    ``image`` : 3D :py:class:`numpy.ndarray`
+        A color image to detect the face in.
+
+    ``method`` : :py:class:`str`
+        A package to be used for face detection. Options supported by this
+        package: "dlib" (dlib is a dependency of this package). If  bob.ip.mtcnn
+        is installed in your system you can use it as-well (bob.ip.mtcnn is NOT
+        a dependency of this package).
+
+    **Returns:**
+
+    ``annotations`` : :py:class:`dict`
+        A dictionary containing annotations of the face bounding box, eye locations and facial landmarks.
+        Dictionary must be as follows ``{'topleft': (row, col), 'bottomright': (row, col), 'leye': (row, col), 'reye': (row, col), 'landmarks': [(col1,row1), (col2,row2), ...]}``.
+        If no annotations found an empty dictionary is returned.
+        Where (rowK,colK) is the location of Kth facial landmark (K=0,...,67).
+    """
+
+    ### Face detector
+
+    try:
+        face_detection_module = importlib.import_module("bob.ip." + method)
+
+    except ImportError:
+
+        print("No module named bob.ip." + method +
+              " trying to use default method!")
+
+        try:
+            face_detection_module = importlib.import_module("bob.ip.dlib")
+            method = "dlib"
+        except ImportError:
+            raise ImportError("No module named bob.ip.dlib")
+
+    if not hasattr(face_detection_module, 'FaceDetector'):
+        raise AttributeError(
+            "bob.ip." + method + " module has no attribute FaceDetector!")
+
+    #### Landmark detector
+
+    try:
+        landmark_detection_module = importlib.import_module(
+            "bob.ip.facelandmarks")
+    except ImportError:
+        raise ImportError("No module named bob.ip.facelandmarks!!")
+
+    if not hasattr(landmark_detection_module,
+                   'detect_landmarks_on_boundingbox'):
+        raise AttributeError(
+            "bob.ip.facelandmarksmodule has no attribute detect_landmarks_on_boundingbox!"
+        )
+
+    face_detector = face_detection_module.FaceDetector()
+
+    data = face_detector.detect_single_face(image)
+
+    annotations = {}
+
+    if (data is not None) and (not all([x is None for x in data])):
+
+        bounding_box = data[0]
+
+        bounding_box_scaled = bounding_box.scale(0.95, True)  # is ok for dlib
+
+        lm = landmark_detection_module.detect_landmarks_on_boundingbox(
+            image, bounding_box_scaled)
+
+        if lm is not None:
+
+            lm = np.array(lm)
+
+            lm = np.vstack((lm[:, 1], lm[:, 0])).T
+
+            #print("LM",lm)
+
+            right_eye, left_eye = get_eye_pos(lm)
+
+            points = []
+
+            for i in range(lm.shape[0]):
+
+                points.append((int(lm[i, 0]), int(lm[i, 1])))
+
+            annotations['topleft'] = bounding_box.topleft
+
+            annotations['bottomright'] = bounding_box.bottomright
+
+            annotations['landmarks'] = points
+
+            annotations['leye'] = left_eye
+
+            annotations['reye'] = right_eye
+
+    return annotations
+
+
+# ==========================================================================
+def normalize_image_size_in_grayscale(image, annotations,
+                                      face_size, use_face_alignment):
+    """
+    This function crops the face in the input Gray-scale image given annotations
+    defining the face bounding box, and eye positions.
+    The size of the face is also normalized to the pre-defined dimensions.
+
+    Two normalization options are available, which are controlled by
+    ``use_face_alignment`` flag, see below.
+
+    **Parameters:**
+
+    ``image`` : 2D :py:class:`numpy.ndarray`
+        Gray-scale input image.
+
+    ``annotations`` : :py:class:`dict`
+        A dictionary containing annotations of the face bounding box,
+        eye locations and facial landmarks.
+        Dictionary must be as follows: ``{'topleft': (row, col), 'bottomright': (row, col),
+        'leye': (row, col), 'reye': (row, col)}``.
+
+    ``face_size`` : :py:class:`int`
+        The size of the face after normalization.
+
+    ``use_face_alignment`` : :py:class:`bool`
+        If ``False``, the re-sizing from this publication is used:
+        "On the Effectiveness of Local Binary Patterns in Face Anti-spoofing"
+        If ``True`` the facial image is both re-sized and aligned using
+        positions of the eyes, which are given in the annotations.
+
+    **Returns:**
+
+    ``normbbx`` : 2D :py:class:`numpy.ndarray`
+        An image of the cropped face of the size (face_size, face_size).
+    """
+
+    if use_face_alignment:
+
+        face_eyes_norm = bob.ip.base.FaceEyesNorm(
+            eyes_distance=((face_size + 1) / 2.),
+            crop_size=(face_size, face_size),
+            eyes_center=(face_size / 4., (face_size - 0.5) / 2.))
+
+        right_eye, left_eye = annotations['reye'], annotations['leye']
+
+        normalized_image = face_eyes_norm( image, right_eye = right_eye, left_eye = left_eye )
+
+        normbbx=normalized_image.astype('uint8')
+
+    else:
+
+        cutframe = image[annotations['topleft'][0]:annotations['bottomright'][
+            0], annotations['topleft'][1]:annotations['bottomright'][1]]
+
+        tempbbx = np.ndarray((face_size, face_size), 'float64')
+        normbbx = np.ndarray((face_size, face_size), 'uint8')
+        bob.ip.base.scale(cutframe, tempbbx)  # normalization
+        tempbbx_ = tempbbx + 0.5
+        tempbbx_ = np.floor(tempbbx_)
+        normbbx = np.cast['uint8'](tempbbx_)
+
+    return normbbx
+
+
+# ==========================================================================
+def normalize_image_size(image, annotations, face_size,
+                         rgb_output_flag, use_face_alignment):
+    """
+    This function crops the face in the input image given annotations defining
+    the face bounding box. The size of the face is also normalized to the
+    pre-defined dimensions. For RGB inputs it is possible to return both
+    color and gray-scale outputs. This option is controlled by ``rgb_output_flag``.
+
+    Two normalization options are available, which are controlled by
+    ``use_face_alignment`` flag, see below.
+
+    **Parameters:**
+
+    ``image`` : 2D or 3D :py:class:`numpy.ndarray`
+        Input image (RGB or gray-scale).
+
+    ``annotations`` : :py:class:`dict`
+        A dictionary containing annotations of the face bounding box,
+        eye locations and facial landmarks.
+        Dictionary must be as follows: ``{'topleft': (row, col), 'bottomright': (row, col),
+        'leye': (row, col), 'reye': (row, col)}``.
+
+    ``face_size`` : :py:class:`int`
+        The size of the face after normalization.
+
+    ``rgb_output_flag`` : :py:class:`bool`
+        Return RGB cropped face if ``True``, otherwise a gray-scale image is
+        returned. Default: ``False``.
+
+    ``use_face_alignment`` : :py:class:`bool`
+        If ``False``, the facial image re-sizing from this publication is used:
+        "On the Effectiveness of Local Binary Patterns in Face Anti-spoofing"
+        If ``True`` the facial image is both re-sized, and aligned, using
+        positions of the eyes, which are given in the annotations.
+
+    **Returns:**
+
+    ``face`` : 2D or 3D :py:class:`numpy.ndarray`
+        An image of the cropped face of the size (face_size, face_size),
+        RGB 3D or gray-scale 2D.
+    """
+
+    if len(image.shape) == 3:
+
+        if not (rgb_output_flag):
+
+            image = bob.ip.color.rgb_to_gray(image)
+
+    if len(image.shape) == 2:
+
+        image = [image]  # make gray-scale image an iterable
+
+    result = []
+
+    for image_channel in image:  # for all color channels in the input image
+
+        cropped_face = normalize_image_size_in_grayscale(
+            image_channel, annotations, face_size, use_face_alignment)
+
+        result.append(cropped_face)
+
+    face = np.stack(result, axis=0)
+
+    face = np.squeeze(face)  # squeeze 1-st dimension for gray-scale images
+
+    return face
+
+
+# ==========================================================================
+class FaceCropAlign(Preprocessor):
+    """
+    This function is designed to crop / size-normalize / align face
+    in the input image.
+
+    The size of the output face is ``3 x face_size x face_size`` pixels, if
+    ``rgb_output_flag = True``, or ``face_size x face_size`` if
+    ``rgb_output_flag = False``.
+
+    The face can also be aligned using positions of the eyes, only when
+    ``use_face_alignment = True`` and ``face_detection_method is not None``.
+
+    Both input annotations, and automatically determined are supported.
+
+    If ``face_detection_method is not None``, the annotations returned by
+    face detector will be used in the cropping.
+    Currently supported face detectors are listed in
+    ``supported_face_detection_method`` argument of this class.
+
+    If ``face_detection_method is None`` (Default), the input annotations are
+    used for cropping.
+
+    A few quality checks are supported in this function.
+    The quality checks are controlled by these arguments:
+    ``max_image_size``, ``min_face_size``. More details below.
+    Note: ``max_image_size`` is only supported when
+    ``face_detection_method is not None``.
+
+    **Parameters:**
+
+    ``face_size`` : :py:class:`int`
+        The size of the face after normalization.
+
+    ``rgb_output_flag`` : :py:class:`bool`
+        Return RGB cropped face if ``True``, otherwise a gray-scale image is
+        returned.
+
+    ``use_face_alignment`` : :py:class:`bool`
+        If set to ``True`` the face will be aligned aligned,
+        using the facial landmarks detected locally.
+        Works only when ``face_detection_method is not None``.
+
+    ``max_image_size`` : :py:class:`int`
+        The maximum size of the image to be processed.
+        ``max_image_size`` is only supported when
+        ``face_detection_method is not None``.
+        Default: ``None``.
+
+    ``face_detection_method`` : :py:class:`str`
+        A package to be used for face detection and landmark detection.
+        Options supported by this class:
+        "dlib" and "mtcnn", which are listed in
+        ``self.supported_face_detection_method`` argument.
+        Default: ``None``.
+
+    ``min_face_size`` : :py:class:`int`
+        The minimal size of the face in pixels to be processed.
+        Default: None.
+    """
+
+    # ==========================================================================
+    def __init__(self, face_size,
+                 rgb_output_flag,
+                 use_face_alignment,
+                 max_image_size=None,
+                 face_detection_method=None,
+                 min_face_size=None,
+                 normalization_function=None,
+                 normalization_function_kwargs = None):
+
+        Preprocessor.__init__(self, face_size=face_size,
+                              rgb_output_flag=rgb_output_flag,
+                              use_face_alignment=use_face_alignment,
+                              max_image_size=max_image_size,
+                              face_detection_method=face_detection_method,
+                              min_face_size=min_face_size,
+                              normalization_function=normalization_function,
+                              normalization_function_kwargs = normalization_function_kwargs)
+
+        self.face_size = face_size
+        self.rgb_output_flag = rgb_output_flag
+        self.use_face_alignment = use_face_alignment
+
+        self.max_image_size = max_image_size
+        self.face_detection_method = face_detection_method
+        self.min_face_size = min_face_size
+        self.normalization_function = normalization_function
+        self.normalization_function_kwargs = normalization_function_kwargs
+
+        self.supported_face_detection_method = ["dlib", "mtcnn"]
+
+        if self.face_detection_method is not None:
+
+            if self.face_detection_method not in self.supported_face_detection_method:
+
+                raise ValueError('The {0} face detection method is not supported by this class. '
+                    'Currently supported face detectors are: bob.ip.{1}, bob.ip.{2}'.
+                    format(face_detection_method, self.supported_face_detection_method[0], self.supported_face_detection_method[1]))
+
+    # ==========================================================================
+    def __call__(self, image, annotations=None):
+        """
+        This function is designed to crop / size-normalize / align face
+        in the input image.
+
+        The size of the output face is ``3 x face_size x face_size`` pixels, if
+        ``rgb_output_flag = True``, or ``face_size x face_size`` if
+        ``rgb_output_flag = False``.
+
+        The face can also be aligned using positions of the eyes, only when
+        ``use_face_alignment = True`` and ``face_detection_method is not None``.
+
+        Both input annotations, and automatically determined are supported.
+
+        If ``face_detection_method is not None``, the annotations returned by
+        face detector will be used in the cropping.
+        Currently supported face detectors are listed in
+        ``supported_face_detection_method`` argument of this class.
+
+        If ``face_detection_method is None`` (Default), the input annotations are
+        used for cropping.
+
+        A few quality checks are supported in this function.
+        The quality checks are controlled by these arguments:
+        ``max_image_size``, ``min_face_size``. More details below.
+        Note: ``max_image_size`` is only supported when
+        ``face_detection_method is not None``.
+
+        **Parameters:**
+
+        ``image`` : 2D or 3D :py:class:`numpy.ndarray`
+            Input image (RGB or gray-scale) or None.
+
+        ``annotations`` : :py:class:`dict` or None
+            A dictionary containing annotations of the face bounding box.
+            Dictionary must be as follows:
+            ``{'topleft': (row, col), 'bottomright': (row, col)}``
+            Default: None .
+
+        **Returns:**
+
+        ``norm_face_image`` : 2D or 3D :py:class:`numpy.ndarray` or None
+            An image of the cropped / aligned face, of the size:
+            (self.face_size, self.face_size), RGB 3D or gray-scale 2D.
+        """
+
+        if self.face_detection_method is not None:
+
+            if self.max_image_size is not None: # max_image_size = 1920, for example
+
+                if np.max(image.shape) > self.max_image_size: # quality check
+
+                    return None
+
+            try:
+
+                annotations = detect_face_landmarks_in_image(image=image,
+                    method=self.face_detection_method)
+
+            except:
+
+                return None
+
+            if not annotations:  # if empty dictionary is returned
+
+                return None
+
+        if annotations is None:  # annotations are missing for this image
+
+            return None
+
+        if self.min_face_size is not None: # quality check
+
+            # size of the face
+            original_face_size = np.min(
+                np.array(annotations['bottomright']) -
+                np.array(annotations['topleft']))
+
+            if original_face_size < self.min_face_size:  # check if face size is above the threshold
+
+                return None
+
+        if self.normalization_function is not None:
+
+            image = self.normalization_function(image, annotations, **self.normalization_function_kwargs)
+
+        norm_face_image = normalize_image_size(image=image,
+                                               annotations=annotations,
+                                               face_size=self.face_size,
+                                               rgb_output_flag=self.rgb_output_flag,
+                                               use_face_alignment=self.use_face_alignment)
+
+        return norm_face_image
+