Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bob.measure
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
bob
bob.measure
Merge requests
!40
Resolve "Detection & Identification Curve cannot be right on user's guide"
Code
Review changes
Check out branch
Download
Patches
Plain diff
Expand sidebar
Merged
Resolve "Detection & Identification Curve cannot be right on user's guide"
34-detection-identification-curve-cannot-be-right-on-user-s-guide
into
master
Overview
0
Commits
1
Pipelines
2
Changes
1
Merged
Resolve "Detection & Identification Curve cannot be right on user's guide"
Manuel Günther
requested to merge
34-detection-identification-curve-cannot-be-right-on-user-s-guide
into
master
Oct 16, 2017
Overview
0
Commits
1
Pipelines
2
Changes
1
Closes
#34 (closed)
Edited
Oct 16, 2017
by
Manuel Günther
0
0
Merge request reports
Compare
master
master (base)
and
latest version
latest version
bed991a0
1 commit,
Oct 16, 2017
1 file
+
4
−
3
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
doc/guide.rst
+
4
−
3
View file @ bed991a0
Edit in single-file editor
Open in Web IDE
Show full file
@@ -413,18 +413,19 @@ obtained in the CMC plot above.
from matplotlib import pyplot
cmc_scores = []
for probe in range(10):
for probe in range(10
00
):
positives = numpy.random.normal(1, 1, 1)
negatives = numpy.random.normal(0, 1, 19)
cmc_scores.append((negatives, positives))
for probe in range(10):
for probe in range(10
00
):
negatives = numpy.random.normal(-1, 1, 10)
cmc_scores.append((negatives, None))
bob.measure.plot.detection_identification_curve(cmc_scores, rank=1, logx=True)
pyplot.xlabel('False Alarm Rate')
pyplot.xlim([0.0001, 1])
pyplot.ylabel('Detection & Identification Rate (%)')
pyplot.ylim([0,1
00
])
pyplot.ylim([0,1])
Loading