Skip to content
Snippets Groups Projects
Commit a67951e4 authored by Amir MOHAMMADI's avatar Amir MOHAMMADI
Browse files

disable more slow tests

parent 0c5f373a
Branches
Tags
1 merge request!79Add keras-based models, add pixel-wise loss, other improvements
......@@ -9,59 +9,59 @@ import shutil
from nose.plugins.attrib import attr
@nose.tools.raises(EarlyStopException)
@attr('slow')
def test_early_stopping_linear_classifier():
config = read_config_files([
datafile('mnist_input_fn.py', __name__),
datafile('mnist_estimator.py', __name__),
])
estimator = config.estimator
train_input_fn = config.train_input_fn
eval_input_fn = config.eval_input_fn
# @nose.tools.raises(EarlyStopException)
# @attr('slow')
# def test_early_stopping_linear_classifier():
# config = read_config_files([
# datafile('mnist_input_fn.py', __name__),
# datafile('mnist_estimator.py', __name__),
# ])
# estimator = config.estimator
# train_input_fn = config.train_input_fn
# eval_input_fn = config.eval_input_fn
hooks = [
EarlyStopping(
'linear/metrics/accuracy/total', min_delta=0.001, patience=1),
]
# hooks = [
# EarlyStopping(
# 'linear/metrics/accuracy/total', min_delta=0.001, patience=1),
# ]
train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn)
eval_spec = tf.estimator.EvalSpec(
input_fn=eval_input_fn, hooks=hooks, throttle_secs=2, steps=10)
# train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn)
# eval_spec = tf.estimator.EvalSpec(
# input_fn=eval_input_fn, hooks=hooks, throttle_secs=2, steps=10)
try:
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
finally:
shutil.rmtree(estimator.model_dir)
# try:
# tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
# finally:
# shutil.rmtree(estimator.model_dir)
@nose.tools.raises(EarlyStopException)
@attr('slow')
def test_early_stopping_logit_trainer():
config = read_config_files([
datafile('mnist_input_fn.py', __name__),
])
train_input_fn = config.train_input_fn
eval_input_fn = config.eval_input_fn
# @nose.tools.raises(EarlyStopException)
# @attr('slow')
# def test_early_stopping_logit_trainer():
# config = read_config_files([
# datafile('mnist_input_fn.py', __name__),
# ])
# train_input_fn = config.train_input_fn
# eval_input_fn = config.eval_input_fn
hooks = [
EarlyStopping('accuracy/value', min_delta=0.001, patience=1),
]
# hooks = [
# EarlyStopping('accuracy/value', min_delta=0.001, patience=1),
# ]
train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn)
eval_spec = tf.estimator.EvalSpec(
input_fn=eval_input_fn, hooks=hooks, throttle_secs=2, steps=10)
# train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn)
# eval_spec = tf.estimator.EvalSpec(
# input_fn=eval_input_fn, hooks=hooks, throttle_secs=2, steps=10)
def architecture(data, mode, **kwargs):
return data, dict()
# def architecture(data, mode, **kwargs):
# return data, dict()
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1e-1)
loss_op = mean_cross_entropy_loss
# optimizer = tf.train.GradientDescentOptimizer(learning_rate=1e-1)
# loss_op = mean_cross_entropy_loss
estimator = Logits(
architecture, optimizer, loss_op, n_classes=10, model_dir=None)
# estimator = Logits(
# architecture, optimizer, loss_op, n_classes=10, model_dir=None)
try:
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
finally:
shutil.rmtree(estimator.model_dir)
# try:
# tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
# finally:
# shutil.rmtree(estimator.model_dir)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment