Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bob.learn.tensorflow
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
This is an archived project. Repository and other project resources are read-only.
Show more breadcrumbs
bob
bob.learn.tensorflow
Commits
a67951e4
Commit
a67951e4
authored
5 years ago
by
Amir MOHAMMADI
Browse files
Options
Downloads
Patches
Plain Diff
disable more slow tests
parent
0c5f373a
Branches
Branches containing commit
Tags
Tags containing commit
1 merge request
!79
Add keras-based models, add pixel-wise loss, other improvements
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
bob/learn/tensorflow/test/test_hooks.py
+45
-45
45 additions, 45 deletions
bob/learn/tensorflow/test/test_hooks.py
with
45 additions
and
45 deletions
bob/learn/tensorflow/test/test_hooks.py
+
45
−
45
View file @
a67951e4
...
@@ -9,59 +9,59 @@ import shutil
...
@@ -9,59 +9,59 @@ import shutil
from
nose.plugins.attrib
import
attr
from
nose.plugins.attrib
import
attr
@nose.tools.raises
(
EarlyStopException
)
#
@nose.tools.raises(EarlyStopException)
@attr
(
'
slow
'
)
#
@attr('slow')
def
test_early_stopping_linear_classifier
():
#
def test_early_stopping_linear_classifier():
config
=
read_config_files
([
#
config = read_config_files([
datafile
(
'
mnist_input_fn.py
'
,
__name__
),
#
datafile('mnist_input_fn.py', __name__),
datafile
(
'
mnist_estimator.py
'
,
__name__
),
#
datafile('mnist_estimator.py', __name__),
])
#
])
estimator
=
config
.
estimator
#
estimator = config.estimator
train_input_fn
=
config
.
train_input_fn
#
train_input_fn = config.train_input_fn
eval_input_fn
=
config
.
eval_input_fn
#
eval_input_fn = config.eval_input_fn
hooks
=
[
#
hooks = [
EarlyStopping
(
#
EarlyStopping(
'
linear/metrics/accuracy/total
'
,
min_delta
=
0.001
,
patience
=
1
),
#
'linear/metrics/accuracy/total', min_delta=0.001, patience=1),
]
#
]
train_spec
=
tf
.
estimator
.
TrainSpec
(
input_fn
=
train_input_fn
)
#
train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn)
eval_spec
=
tf
.
estimator
.
EvalSpec
(
#
eval_spec = tf.estimator.EvalSpec(
input_fn
=
eval_input_fn
,
hooks
=
hooks
,
throttle_secs
=
2
,
steps
=
10
)
#
input_fn=eval_input_fn, hooks=hooks, throttle_secs=2, steps=10)
try
:
#
try:
tf
.
estimator
.
train_and_evaluate
(
estimator
,
train_spec
,
eval_spec
)
#
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
finally
:
#
finally:
shutil
.
rmtree
(
estimator
.
model_dir
)
#
shutil.rmtree(estimator.model_dir)
@nose.tools.raises
(
EarlyStopException
)
#
@nose.tools.raises(EarlyStopException)
@attr
(
'
slow
'
)
#
@attr('slow')
def
test_early_stopping_logit_trainer
():
#
def test_early_stopping_logit_trainer():
config
=
read_config_files
([
#
config = read_config_files([
datafile
(
'
mnist_input_fn.py
'
,
__name__
),
#
datafile('mnist_input_fn.py', __name__),
])
#
])
train_input_fn
=
config
.
train_input_fn
#
train_input_fn = config.train_input_fn
eval_input_fn
=
config
.
eval_input_fn
#
eval_input_fn = config.eval_input_fn
hooks
=
[
#
hooks = [
EarlyStopping
(
'
accuracy/value
'
,
min_delta
=
0.001
,
patience
=
1
),
#
EarlyStopping('accuracy/value', min_delta=0.001, patience=1),
]
#
]
train_spec
=
tf
.
estimator
.
TrainSpec
(
input_fn
=
train_input_fn
)
#
train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn)
eval_spec
=
tf
.
estimator
.
EvalSpec
(
#
eval_spec = tf.estimator.EvalSpec(
input_fn
=
eval_input_fn
,
hooks
=
hooks
,
throttle_secs
=
2
,
steps
=
10
)
#
input_fn=eval_input_fn, hooks=hooks, throttle_secs=2, steps=10)
def
architecture
(
data
,
mode
,
**
kwargs
):
#
def architecture(data, mode, **kwargs):
return
data
,
dict
()
#
return data, dict()
optimizer
=
tf
.
train
.
GradientDescentOptimizer
(
learning_rate
=
1e-1
)
#
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1e-1)
loss_op
=
mean_cross_entropy_loss
#
loss_op = mean_cross_entropy_loss
estimator
=
Logits
(
#
estimator = Logits(
architecture
,
optimizer
,
loss_op
,
n_classes
=
10
,
model_dir
=
None
)
#
architecture, optimizer, loss_op, n_classes=10, model_dir=None)
try
:
#
try:
tf
.
estimator
.
train_and_evaluate
(
estimator
,
train_spec
,
eval_spec
)
#
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
finally
:
#
finally:
shutil
.
rmtree
(
estimator
.
model_dir
)
#
shutil.rmtree(estimator.model_dir)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment