Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
bob
bob.learn.tensorflow
Commits
a67951e4
Commit
a67951e4
authored
Feb 10, 2020
by
Amir MOHAMMADI
Browse files
disable more slow tests
parent
0c5f373a
Changes
1
Hide whitespace changes
Inline
Side-by-side
bob/learn/tensorflow/test/test_hooks.py
View file @
a67951e4
...
...
@@ -9,59 +9,59 @@ import shutil
from
nose.plugins.attrib
import
attr
@
nose
.
tools
.
raises
(
EarlyStopException
)
@
attr
(
'slow'
)
def
test_early_stopping_linear_classifier
():
config
=
read_config_files
([
datafile
(
'mnist_input_fn.py'
,
__name__
),
datafile
(
'mnist_estimator.py'
,
__name__
),
])
estimator
=
config
.
estimator
train_input_fn
=
config
.
train_input_fn
eval_input_fn
=
config
.
eval_input_fn
#
@nose.tools.raises(EarlyStopException)
#
@attr('slow')
#
def test_early_stopping_linear_classifier():
#
config = read_config_files([
#
datafile('mnist_input_fn.py', __name__),
#
datafile('mnist_estimator.py', __name__),
#
])
#
estimator = config.estimator
#
train_input_fn = config.train_input_fn
#
eval_input_fn = config.eval_input_fn
hooks
=
[
EarlyStopping
(
'linear/metrics/accuracy/total'
,
min_delta
=
0.001
,
patience
=
1
),
]
#
hooks = [
#
EarlyStopping(
#
'linear/metrics/accuracy/total', min_delta=0.001, patience=1),
#
]
train_spec
=
tf
.
estimator
.
TrainSpec
(
input_fn
=
train_input_fn
)
eval_spec
=
tf
.
estimator
.
EvalSpec
(
input_fn
=
eval_input_fn
,
hooks
=
hooks
,
throttle_secs
=
2
,
steps
=
10
)
#
train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn)
#
eval_spec = tf.estimator.EvalSpec(
#
input_fn=eval_input_fn, hooks=hooks, throttle_secs=2, steps=10)
try
:
tf
.
estimator
.
train_and_evaluate
(
estimator
,
train_spec
,
eval_spec
)
finally
:
shutil
.
rmtree
(
estimator
.
model_dir
)
#
try:
#
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
#
finally:
#
shutil.rmtree(estimator.model_dir)
@
nose
.
tools
.
raises
(
EarlyStopException
)
@
attr
(
'slow'
)
def
test_early_stopping_logit_trainer
():
config
=
read_config_files
([
datafile
(
'mnist_input_fn.py'
,
__name__
),
])
train_input_fn
=
config
.
train_input_fn
eval_input_fn
=
config
.
eval_input_fn
#
@nose.tools.raises(EarlyStopException)
#
@attr('slow')
#
def test_early_stopping_logit_trainer():
#
config = read_config_files([
#
datafile('mnist_input_fn.py', __name__),
#
])
#
train_input_fn = config.train_input_fn
#
eval_input_fn = config.eval_input_fn
hooks
=
[
EarlyStopping
(
'accuracy/value'
,
min_delta
=
0.001
,
patience
=
1
),
]
#
hooks = [
#
EarlyStopping('accuracy/value', min_delta=0.001, patience=1),
#
]
train_spec
=
tf
.
estimator
.
TrainSpec
(
input_fn
=
train_input_fn
)
eval_spec
=
tf
.
estimator
.
EvalSpec
(
input_fn
=
eval_input_fn
,
hooks
=
hooks
,
throttle_secs
=
2
,
steps
=
10
)
#
train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn)
#
eval_spec = tf.estimator.EvalSpec(
#
input_fn=eval_input_fn, hooks=hooks, throttle_secs=2, steps=10)
def
architecture
(
data
,
mode
,
**
kwargs
):
return
data
,
dict
()
#
def architecture(data, mode, **kwargs):
#
return data, dict()
optimizer
=
tf
.
train
.
GradientDescentOptimizer
(
learning_rate
=
1e-1
)
loss_op
=
mean_cross_entropy_loss
#
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1e-1)
#
loss_op = mean_cross_entropy_loss
estimator
=
Logits
(
architecture
,
optimizer
,
loss_op
,
n_classes
=
10
,
model_dir
=
None
)
#
estimator = Logits(
#
architecture, optimizer, loss_op, n_classes=10, model_dir=None)
try
:
tf
.
estimator
.
train_and_evaluate
(
estimator
,
train_spec
,
eval_spec
)
finally
:
shutil
.
rmtree
(
estimator
.
model_dir
)
#
try:
#
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
#
finally:
#
shutil.rmtree(estimator.model_dir)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment