Skip to content
Snippets Groups Projects
Commit 27e73aec authored by Amir MOHAMMADI's avatar Amir MOHAMMADI
Browse files

cast labels to required format

parent b9cc5a9a
No related branches found
No related tags found
1 merge request!79Add keras-based models, add pixel-wise loss, other improvements
......@@ -44,22 +44,22 @@ patch = Sequential([
Activation('relu'),
MaxPool2D(padding='same'),
Conv2D(100, (3, 3), padding='same', use_bias=False, input_shape=(96,96,3)),
Conv2D(100, (3, 3), padding='same', use_bias=False),
BatchNormalization(scale=False),
Activation('relu'),
MaxPool2D(padding='same'),
Conv2D(150, (3, 3), padding='same', use_bias=False, input_shape=(96,96,3)),
Conv2D(150, (3, 3), padding='same', use_bias=False),
BatchNormalization(scale=False),
Activation('relu'),
MaxPool2D(pool_size=3, strides=2, padding='same'),
Conv2D(200, (3, 3), padding='same', use_bias=False, input_shape=(96,96,3)),
Conv2D(200, (3, 3), padding='same', use_bias=False),
BatchNormalization(scale=False),
Activation('relu'),
MaxPool2D(padding='same'),
Conv2D(250, (3, 3), padding='same', use_bias=False, input_shape=(96,96,3)),
Conv2D(250, (3, 3), padding='same', use_bias=False),
BatchNormalization(scale=False),
Activation('relu'),
MaxPool2D(padding='same'),
......@@ -388,6 +388,7 @@ def model_fn(features, labels, mode, params=None, config=None):
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Calculate Loss (for both TRAIN and EVAL modes)
labels = tf.cast(labels, dtype="int32")
loss = tf.losses.sparse_softmax_cross_entropy(logits=logits, labels=labels)
# Add the regularization terms to the loss
if regularization_rate:
......
......@@ -401,6 +401,9 @@ def model_fn(features, labels, mode, params=None, config=None):
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# convert labels to the expected int32 format
labels = tf.cast(labels, dtype="int32")
accuracy = tf.metrics.accuracy(
labels=labels, predictions=predictions["classes"])
metrics = {'accuracy': accuracy}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment