Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
bob
bob.learn.boosting
Commits
566a6a8d
Commit
566a6a8d
authored
May 08, 2017
by
akomaty@idiap.ch
Browse files
removed unnecessary commands starting with ./bin/
parent
13204f42
Pipeline
#8945
canceled with stages
in 9 minutes and 55 seconds
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
doc/example.rst
View file @
566a6a8d
...
...
@@ -32,10 +32,10 @@ Nevertheless, other discrete features, like Local Binary Patterns (LBP) could be
Running the example script
--------------------------
The script ``
./bin/
boosting_example.py`` is provided to execute digit classification tasks.
The script ``boosting_example.py`` is provided to execute digit classification tasks.
This script has several command line parameters, which vary the behavior of the training and/or testing procedure.
All parameters have a long value (starting with ``--``) and a shortcut (starting with a single ``-``).
These parameters are (see also ``
./bin/
boosting_example.py --help``):
These parameters are (see also ``boosting_example.py --help``):
To control the type of training, you can select:
...
...
@@ -61,19 +61,19 @@ Four different kinds of experiments can be performed:
1. Uni-variate classification using the stump classifier :py:class:`bob.learn.boosting.StumpMachine`, classifying digits 5 and 6::
$
./bin/
boosting_example.py -vv --trainer-type stump --digits 5 6
$ boosting_example.py -vv --trainer-type stump --digits 5 6
2. Uni-variate classification using the LUT classifier :py:class:`bob.learn.boosting.LUTMachine`, classifying digits 5 and 6::
$
./bin/
boosting_example.py -vv --trainer-type lut --digits 5 6
$ boosting_example.py -vv --trainer-type lut --digits 5 6
3. Multi-variate classification using LUT classifier :py:class:`bob.learn.boosting.LUTMachine` and shared features, classifying all 10 digits::
$
./bin/
boosting_example.py -vv --trainer-type lut --all-digits --multi-variate --feature-selection-style shared
$ boosting_example.py -vv --trainer-type lut --all-digits --multi-variate --feature-selection-style shared
4. Multi-variate classification using LUT classifier :py:class:`bob.learn.boosting.LUTMachine` and independent features, classifying all 10 digits::
$
./bin/
boosting_example.py -vv --trainer-type lut --all-digits --multi-variate --feature-selection-style independent
$ boosting_example.py -vv --trainer-type lut --all-digits --multi-variate --feature-selection-style independent
.. note:
...
...
setup.py
View file @
566a6a8d
...
...
@@ -126,7 +126,6 @@ setup(
# Define the entry points for this package
entry_points
=
{
# Console scripts, which will appear in ./bin/ after buildout
'console_scripts'
:
[
'boosting_example.py = bob.learn.boosting.examples.mnist:main'
,
],
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment