diff --git a/doc/example.rst b/doc/example.rst
index 9308208a637bbf522913c3f03b7d6ff933430161..09b5ac5dd75737fe5d79aba8c64b1c996e3db3f3 100644
--- a/doc/example.rst
+++ b/doc/example.rst
@@ -32,10 +32,10 @@ Nevertheless, other discrete features, like Local Binary Patterns (LBP) could be
Running the example script
--------------------------
-The script ``./bin/boosting_example.py`` is provided to execute digit classification tasks.
+The script ``boosting_example.py`` is provided to execute digit classification tasks.
This script has several command line parameters, which vary the behavior of the training and/or testing procedure.
All parameters have a long value (starting with ``--``) and a shortcut (starting with a single ``-``).
-These parameters are (see also ``./bin/boosting_example.py --help``):
+These parameters are (see also ``boosting_example.py --help``):
To control the type of training, you can select:
@@ -61,19 +61,19 @@ Four different kinds of experiments can be performed:
1. Uni-variate classification using the stump classifier :py:class:`bob.learn.boosting.StumpMachine`, classifying digits 5 and 6::
- $ ./bin/boosting_example.py -vv --trainer-type stump --digits 5 6
+ $ boosting_example.py -vv --trainer-type stump --digits 5 6
2. Uni-variate classification using the LUT classifier :py:class:`bob.learn.boosting.LUTMachine`, classifying digits 5 and 6::
- $ ./bin/boosting_example.py -vv --trainer-type lut --digits 5 6
+ $ boosting_example.py -vv --trainer-type lut --digits 5 6
3. Multi-variate classification using LUT classifier :py:class:`bob.learn.boosting.LUTMachine` and shared features, classifying all 10 digits::
- $ ./bin/boosting_example.py -vv --trainer-type lut --all-digits --multi-variate --feature-selection-style shared
+ $ boosting_example.py -vv --trainer-type lut --all-digits --multi-variate --feature-selection-style shared
4. Multi-variate classification using LUT classifier :py:class:`bob.learn.boosting.LUTMachine` and independent features, classifying all 10 digits::
- $ ./bin/boosting_example.py -vv --trainer-type lut --all-digits --multi-variate --feature-selection-style independent
+ $ boosting_example.py -vv --trainer-type lut --all-digits --multi-variate --feature-selection-style independent
.. note:
diff --git a/setup.py b/setup.py
index ca1a8a55d2a6706a4140581783b0918cfac8f1da..286fc0599d7f2e02468f4bc9da16642125510338 100644
--- a/setup.py
+++ b/setup.py
@@ -126,7 +126,6 @@ setup(
# Define the entry points for this package
entry_points={
- # Console scripts, which will appear in ./bin/ after buildout
'console_scripts': [
'boosting_example.py = bob.learn.boosting.examples.mnist:main',
],