Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
bob
bob.bio.face
Commits
172e1259
Commit
172e1259
authored
Jun 02, 2021
by
Tiago de Freitas Pereira
Browse files
Organizing the baselines
parent
db921441
Pipeline
#51195
failed with stage
in 1 minute and 26 seconds
Changes
27
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
bob/bio/face/config/baseline/afffe.py
View file @
172e1259
import
bob.bio.base
from
bob.bio.face.preprocessor
import
FaceCrop
from
bob.bio.face.embeddings.pytorch
import
AFFFE_2021
from
bob.pipelines
import
wrap
import
scipy.spatial
from
bob.bio.base.pipelines.vanilla_biometrics
import
Distance
from
sklearn.pipeline
import
make_pipeline
from
bob.pipelines
import
wrap
from
bob.bio.base.pipelines.vanilla_biometrics
import
VanillaBiometricsPipeline
from
bob.bio.face.embeddings.pytorch
import
afffe_baseline
from
bob.bio.face.utils
import
lookup_config_from_database
memory_demanding
=
False
if
"database"
in
locals
():
annotation_type
=
database
.
annotation_type
fixed_positions
=
database
.
fixed_positions
memory_demanding
=
(
database
.
memory_demanding
if
hasattr
(
database
,
"memory_demanding"
)
else
False
)
else
:
annotation_type
=
None
fixed_positions
=
None
cropped_positions
=
{
"leye"
:
(
110
,
144
),
"reye"
:
(
110
,
96
)}
preprocessor_transformer
=
FaceCrop
(
cropped_image_size
=
(
224
,
224
),
cropped_positions
=
cropped_positions
,
color_channel
=
"rgb"
,
fixed_positions
=
fixed_positions
,
allow_upside_down_normalized_faces
=
True
,
annotation_type
,
fixed_positions
,
_
=
lookup_config_from_database
(
locals
().
get
(
"database"
)
)
transform_extra_arguments
=
(
None
if
(
cropped_positions
is
None
or
fixed_positions
is
not
None
)
else
((
"annotations"
,
"annotations"
),)
)
extractor_transformer
=
AFFFE_2021
()
def
load
(
annotation_type
,
fixed_positions
=
None
):
return
afffe_baseline
(
annotation_type
,
fixed_positions
)
# Algorithm
algorithm
=
Distance
(
distance_function
=
scipy
.
spatial
.
distance
.
cosine
,
is_distance_function
=
True
)
# Chain the Transformers together
transformer
=
make_pipeline
(
wrap
(
[
"sample"
],
preprocessor_transformer
,
transform_extra_arguments
=
transform_extra_arguments
,
),
wrap
([
"sample"
],
extractor_transformer
)
# Add more transformers here if needed
)
pipeline
=
load
(
annotation_type
,
fixed_positions
)
# Assemble the Vanilla Biometric pipeline and execute
pipeline
=
VanillaBiometricsPipeline
(
transformer
,
algorithm
)
transformer
=
pipeline
.
transformer
bob/bio/face/config/baseline/arcface_insightface.py
View file @
172e1259
from
bob.bio.face.embeddings.mxnet
import
ArcFaceInsightFace_LResNet100
from
bob.bio.face.config.baseline.helpers
import
embedding_transformer_112x112
from
bob.bio.base.pipelines.vanilla_biometrics
import
(
Distance
,
VanillaBiometricsPipeline
,
)
if
"database"
in
locals
():
annotation_type
=
database
.
annotation_type
fixed_positions
=
database
.
fixed_positions
memory_demanding
=
(
database
.
memory_demanding
if
hasattr
(
database
,
"memory_demanding"
)
else
False
)
else
:
annotation_type
=
None
fixed_positions
=
None
memory_demanding
=
False
from
bob.bio.face.embeddings.mxnet
import
arcface_baseline
from
bob.bio.face.utils
import
lookup_config_from_database
annotation_type
,
fixed_positions
,
memory_demanding
=
lookup_config_from_database
(
locals
().
get
(
"database"
)
...
...
@@ -23,19 +7,12 @@ annotation_type, fixed_positions, memory_demanding = lookup_config_from_database
def
load
(
annotation_type
,
fixed_positions
=
None
):
transformer
=
embedding_transformer_112x112
(
ArcFaceInsightFace_LResNet100
(
memory_demanding
=
memory_demanding
),
annotation_type
,
fixed_positions
,
color_channel
=
"rgb"
,
)
return
arcface_baseline
(
embedding
=
ArcFaceInsightFace
(
memory_demanding
=
memory_demanding
),
embedding
=
ArcFaceInsightFace
_LResNet100
(
memory_demanding
=
memory_demanding
),
annotation_type
=
annotation_type
,
fixed_positions
=
fixed_positions
,
)
pipeline
=
load
(
annotation_type
,
fixed_positions
)
transformer
=
pipeline
.
transformer
bob/bio/face/config/baseline/facenet_sanderberg.py
View file @
172e1259
from
bob.bio.face.embeddings.tf2_inception_resnet
import
(
FaceNetSanderberg_20170512_110547
,
)
from
bob.bio.face.embeddings.tensorflow
import
facenet_sanderberg_20170512_110547
from
bob.bio.face.utils
import
lookup_config_from_database
from
bob.bio.face.config.baseline.templates
import
facenet_baseline
annotation_type
,
fixed_positions
,
memory_demanding
=
lookup_config_from_database
(
locals
().
get
(
"database"
)
...
...
@@ -10,12 +7,9 @@ annotation_type, fixed_positions, memory_demanding = lookup_config_from_database
def
load
(
annotation_type
,
fixed_positions
=
None
):
return
facenet_baseline
(
embedding
=
FaceNetSanderberg_20170512_110547
(
memory_demanding
=
memory_demanding
),
annotation_type
=
annotation_type
,
fixed_positions
=
fixed_positions
,
return
facenet_sanderberg_20170512_110547
(
annotation_type
,
fixed_positions
,
memory_demanding
)
pipeline
=
load
(
annotation_type
,
fixed_positions
)
transformer
=
pipeline
.
transformer
bob/bio/face/config/baseline/inception_resnetv1_casiawebface.py
View file @
172e1259
from
bob.bio.face.embeddings.tf2_inception_resnet
import
(
InceptionResnetv1_Casia_CenterLoss_2018
,
)
from
bob.bio.face.embeddings.tensorflow
import
inception_resnet_v1_casia_centerloss_2018
from
bob.bio.face.utils
import
lookup_config_from_database
from
bob.bio.face.config.baseline.templates
import
facenet_baseline
annotation_type
,
fixed_positions
,
memory_demanding
=
lookup_config_from_database
(
locals
().
get
(
"database"
)
)
def
load
(
annotation_type
,
fixed_positions
=
None
):
return
facenet_baseline
(
embedding
=
InceptionResnetv1_Casia_CenterLoss_2018
(
memory_demanding
=
memory_demanding
),
annotation_type
=
annotation_type
,
fixed_positions
=
fixed_positions
,
def
load
(
annotation_type
,
fixed_positions
=
None
,
memory_demanding
=
None
):
return
inception_resnet_v1_casia_centerloss_2018
(
annotation_type
,
fixed_positions
,
memory_demanding
)
pipeline
=
load
(
annotation_type
,
fixed_positions
)
transformer
=
pipeline
.
transformer
pipeline
=
load
(
annotation_type
,
fixed_positions
,
memory_demanding
)
bob/bio/face/config/baseline/inception_resnetv1_msceleb.py
View file @
172e1259
from
bob.bio.face.embeddings.t
f2_inception_resnet
import
(
I
nception
R
esnetv1_
MsC
eleb_
C
enter
L
oss_2018
,
from
bob.bio.face.embeddings.t
ensorflow
import
(
i
nception
_r
esnet
_
v1_
msc
eleb_
c
enter
l
oss_2018
,
)
from
bob.bio.face.utils
import
lookup_config_from_database
from
bob.bio.face.config.baseline.templates
import
facenet_baseline
annotation_type
,
fixed_positions
,
memory_demanding
=
lookup_config_from_database
(
locals
().
get
(
"database"
)
)
def
load
(
annotation_type
,
fixed_positions
=
None
):
return
facenet_baseline
(
embedding
=
InceptionResnetv1_MsCeleb_CenterLoss_2018
(
memory_demanding
=
memory_demanding
),
annotation_type
=
annotation_type
,
fixed_positions
=
fixed_positions
,
def
load
(
annotation_type
,
fixed_positions
=
None
,
memory_demanding
=
None
):
return
inception_resnet_v1_msceleb_centerloss_2018
(
annotation_type
,
fixed_positions
,
memory_demanding
)
pipeline
=
load
(
annotation_type
,
fixed_positions
)
transformer
=
pipeline
.
transformer
pipeline
=
load
(
annotation_type
,
fixed_positions
,
memory_demanding
)
bob/bio/face/config/baseline/inception_resnetv2_casiawebface.py
View file @
172e1259
from
bob.bio.face.embeddings.tf2_inception_resnet
import
(
InceptionResnetv2_Casia_CenterLoss_2018
,
)
from
bob.bio.face.embeddings.tensorflow
import
inception_resnet_v2_casia_centerloss_2018
from
bob.bio.face.utils
import
lookup_config_from_database
from
bob.bio.face.config.baseline.templates
import
facenet_baseline
annotation_type
,
fixed_positions
,
memory_demanding
=
lookup_config_from_database
(
locals
().
get
(
"database"
)
)
def
load
(
annotation_type
,
fixed_positions
=
None
):
return
facenet_baseline
(
embedding
=
InceptionResnetv2_Casia_CenterLoss_2018
(
memory_demanding
=
memory_demanding
),
annotation_type
=
annotation_type
,
fixed_positions
=
fixed_positions
,
def
load
(
annotation_type
,
fixed_positions
=
None
,
memory_demanding
=
None
):
return
inception_resnet_v2_casia_centerloss_2018
(
annotation_type
,
fixed_positions
,
memory_demanding
)
pipeline
=
load
(
annotation_type
,
fixed_positions
)
transformer
=
pipeline
.
transformer
pipeline
=
load
(
annotation_type
,
fixed_positions
,
memory_demanding
)
bob/bio/face/config/baseline/inception_resnetv2_msceleb.py
View file @
172e1259
from
bob.bio.face.embeddings.t
f2_inception_resnet
import
(
I
nception
R
esnetv2_
MsC
eleb_
C
enter
L
oss_2018
,
from
bob.bio.face.embeddings.t
ensorflow
import
(
i
nception
_r
esnet
_
v2_
msc
eleb_
c
enter
l
oss_2018
,
)
from
bob.bio.face.utils
import
lookup_config_from_database
from
bob.bio.face.config.baseline.templates
import
facenet_baseline
annotation_type
,
fixed_positions
,
memory_demanding
=
lookup_config_from_database
(
locals
().
get
(
"database"
)
)
def
load
(
annotation_type
,
fixed_positions
=
None
):
return
facenet_baseline
(
embedding
=
InceptionResnetv2_MsCeleb_CenterLoss_2018
(
memory_demanding
=
memory_demanding
),
annotation_type
=
annotation_type
,
fixed_positions
=
fixed_positions
,
def
load
(
annotation_type
,
fixed_positions
=
None
,
memory_demanding
=
None
):
return
inception_resnet_v2_msceleb_centerloss_2018
(
annotation_type
,
fixed_positions
,
memory_demanding
)
pipeline
=
load
(
annotation_type
,
fixed_positions
)
transformer
=
pipeline
.
transformer
pipeline
=
load
(
annotation_type
,
fixed_positions
,
memory_demanding
)
bob/bio/face/config/baseline/mobilenetv2_msceleb_arcface_2021.py
View file @
172e1259
from
bob.bio.face.embeddings.
mobilenet_v2
import
M
obile
N
etv2_
MsC
eleb_
A
rc
F
ace_2021
from
bob.bio.face.embeddings.
tensorflow
import
m
obile
n
etv2_
msc
eleb_
a
rc
f
ace_2021
from
bob.bio.face.utils
import
lookup_config_from_database
from
bob.bio.face.config.baseline.templates
import
arcface_baseline
annotation_type
,
fixed_positions
,
memory_demanding
=
lookup_config_from_database
(
locals
().
get
(
"database"
)
)
def
load
(
annotation_type
,
fixed_positions
=
None
):
return
arcface_baseline
(
embedding
=
MobileNetv2_MsCeleb_ArcFace_2021
(
memory_demanding
=
memory_demanding
),
annotation_type
=
annotation_type
,
fixed_positions
=
fixed_positions
,
def
load
(
annotation_type
,
fixed_positions
=
None
,
memory_demanding
=
None
):
return
mobilenetv2_msceleb_arcface_2021
(
annotation_type
,
fixed_positions
,
memory_demanding
)
pipeline
=
load
(
annotation_type
,
fixed_positions
)
transformer
=
pipeline
.
transformer
pipeline
=
load
(
annotation_type
,
fixed_positions
,
memory_demanding
)
bob/bio/face/config/baseline/mxnet_pipe.py
deleted
100644 → 0
View file @
db921441
import
bob.bio.base
from
bob.bio.face.preprocessor
import
FaceCrop
from
bob.bio.face.extractor
import
MxNetModel
from
bob.bio.base.algorithm
import
Distance
from
bob.bio.base.pipelines.vanilla_biometrics.legacy
import
BioAlgorithmLegacy
import
scipy.spatial
from
bob.bio.base.pipelines.vanilla_biometrics
import
Distance
from
sklearn.pipeline
import
make_pipeline
from
bob.pipelines
import
wrap
from
bob.bio.base.pipelines.vanilla_biometrics
import
VanillaBiometricsPipeline
memory_demanding
=
False
if
"database"
in
locals
():
annotation_type
=
database
.
annotation_type
fixed_positions
=
database
.
fixed_positions
memory_demanding
=
(
database
.
memory_demanding
if
hasattr
(
database
,
"memory_demanding"
)
else
False
)
else
:
annotation_type
=
None
fixed_positions
=
None
cropped_positions
=
{
"leye"
:
(
49
,
72
),
"reye"
:
(
49
,
38
)}
preprocessor_transformer
=
FaceCrop
(
cropped_image_size
=
(
112
,
112
),
cropped_positions
=
{
"leye"
:
(
49
,
72
),
"reye"
:
(
49
,
38
)},
color_channel
=
"rgb"
,
fixed_positions
=
fixed_positions
,
)
transform_extra_arguments
=
(
None
if
(
cropped_positions
is
None
or
fixed_positions
is
not
None
)
else
((
"annotations"
,
"annotations"
),)
)
extractor_transformer
=
MxNetModel
()
algorithm
=
Distance
(
distance_function
=
scipy
.
spatial
.
distance
.
cosine
,
is_distance_function
=
True
)
# Chain the Transformers together
transformer
=
make_pipeline
(
wrap
(
[
"sample"
],
preprocessor_transformer
,
transform_extra_arguments
=
transform_extra_arguments
,
),
wrap
([
"sample"
],
extractor_transformer
)
# Add more transformers here if needed
)
# Assemble the Vanilla Biometric pipeline and execute
pipeline
=
VanillaBiometricsPipeline
(
transformer
,
algorithm
)
transformer
=
pipeline
.
transformer
bob/bio/face/config/baseline/mxnet_tinyface.py
View file @
172e1259
...
...
@@ -14,19 +14,24 @@ from bob.bio.base.pipelines.vanilla_biometrics import VanillaBiometricsPipeline
annotator_transformer
=
BobIpTinyface
()
preprocessor_transformer
=
FaceCrop
(
cropped_image_size
=
(
112
,
112
),
cropped_positions
=
{
'leye'
:(
49
,
72
),
'reye'
:(
49
,
38
)},
color_channel
=
'rgb'
,
annotator
=
annotator_transformer
)
preprocessor_transformer
=
FaceCrop
(
cropped_image_size
=
(
112
,
112
),
cropped_positions
=
{
"leye"
:
(
49
,
72
),
"reye"
:
(
49
,
38
)},
color_channel
=
"rgb"
,
annotator
=
annotator_transformer
,
)
extractor_transformer
=
MxNetModel
()
algorithm
=
Distance
(
distance_function
=
scipy
.
spatial
.
distance
.
cosine
,
is_distance_function
=
True
)
algorithm
=
Distance
(
distance_function
=
scipy
.
spatial
.
distance
.
cosine
,
is_distance_function
=
True
)
transformer
=
make_pipeline
(
wrap
([
"sample"
],
preprocessor_transformer
),
wrap
([
"sample"
],
extractor_transformer
)
wrap
([
"sample"
],
preprocessor_transformer
),
wrap
([
"sample"
],
extractor_transformer
)
)
pipeline
=
VanillaBiometricsPipeline
(
transformer
,
algorithm
)
transformer
=
pipeline
.
transformer
bob/bio/face/config/baseline/pytorch_pipe_v2.py
deleted
100644 → 0
View file @
db921441
import
bob.bio.base
from
bob.bio.face.preprocessor
import
FaceCrop
from
bob.bio.face.extractor
import
PyTorchLibraryModel
from
facenet_pytorch
import
InceptionResnetV1
from
bob.bio.base.algorithm
import
Distance
from
bob.bio.base.pipelines.vanilla_biometrics.legacy
import
BioAlgorithmLegacy
import
scipy.spatial
from
bob.bio.base.pipelines.vanilla_biometrics
import
Distance
from
sklearn.pipeline
import
make_pipeline
from
bob.pipelines
import
wrap
from
bob.bio.base.pipelines.vanilla_biometrics
import
VanillaBiometricsPipeline
memory_demanding
=
False
if
"database"
in
locals
():
annotation_type
=
database
.
annotation_type
fixed_positions
=
database
.
fixed_positions
memory_demanding
=
(
database
.
memory_demanding
if
hasattr
(
database
,
"memory_demanding"
)
else
False
)
else
:
annotation_type
=
None
fixed_positions
=
None
cropped_positions
=
{
"leye"
:
(
49
,
72
),
"reye"
:
(
49
,
38
)}
cropped_positions
=
{
"leye"
:
(
110
,
144
),
"reye"
:
(
110
,
96
)}
preprocessor_transformer
=
FaceCrop
(
cropped_image_size
=
(
224
,
224
),
cropped_positions
=
{
"leye"
:
(
110
,
144
),
"reye"
:
(
110
,
96
)},
color_channel
=
"rgb"
,
fixed_positions
=
fixed_positions
,
)
transform_extra_arguments
=
(
None
if
(
cropped_positions
is
None
or
fixed_positions
is
not
None
)
else
((
"annotations"
,
"annotations"
),)
)
transform_extra_arguments
=
(
None
if
(
cropped_positions
is
None
or
fixed_positions
is
not
None
)
else
((
"annotations"
,
"annotations"
),)
)
model
=
InceptionResnetV1
(
pretrained
=
"vggface2"
).
eval
()
extractor_transformer
=
PyTorchLibraryModel
(
model
=
model
)
algorithm
=
Distance
(
distance_function
=
scipy
.
spatial
.
distance
.
cosine
,
is_distance_function
=
True
)
# Chain the Transformers together
transformer
=
make_pipeline
(
wrap
(
[
"sample"
],
preprocessor_transformer
,
transform_extra_arguments
=
transform_extra_arguments
,
),
wrap
([
"sample"
],
extractor_transformer
)
# Add more transformers here if needed
)
# Assemble the Vanilla Biometric pipeline and execute
pipeline
=
VanillaBiometricsPipeline
(
transformer
,
algorithm
)
transformer
=
pipeline
.
transformer
bob/bio/face/config/baseline/resnet50_msceleb_arcface_2021.py
View file @
172e1259
from
bob.bio.face.embeddings.
resnet50
import
R
esnet50_
MsC
eleb_
A
rc
F
ace_2021
from
bob.bio.face.embeddings.
tensorflow
import
r
esnet50_
msc
eleb_
a
rc
f
ace_2021
from
bob.bio.face.utils
import
lookup_config_from_database
from
bob.bio.face.config.baseline.templates
import
arcface_baseline
annotation_type
,
fixed_positions
,
memory_demanding
=
lookup_config_from_database
(
locals
().
get
(
"database"
)
)
def
load
(
annotation_type
,
fixed_positions
=
None
):
return
arcface_baseline
(
embedding
=
Resnet50_MsCeleb_ArcFace_2021
(
memory_demanding
=
memory_demanding
),
annotation_type
=
annotation_type
,
fixed_positions
=
fixed_positions
,
def
load
(
annotation_type
,
fixed_positions
=
None
,
memory_demanding
=
None
):
return
resnet50_msceleb_arcface_2021
(
annotation_type
,
fixed_positions
,
memory_demanding
)
pipeline
=
load
(
annotation_type
,
fixed_positions
)
transformer
=
pipeline
.
transformer
pipeline
=
load
(
annotation_type
,
fixed_positions
,
memory_demanding
)
bob/bio/face/config/baseline/resnet50_vgg2_arcface_2021.py
View file @
172e1259
from
bob.bio.face.embeddings.
resnet50
import
R
esnet50_
VGG
2_
A
rc
F
ace_2021
from
bob.bio.face.embeddings.
tensorflow
import
r
esnet50_
vgg
2_
a
rc
f
ace_2021
from
bob.bio.face.utils
import
lookup_config_from_database
from
bob.bio.face.config.baseline.templates
import
arcface_baseline
annotation_type
,
fixed_positions
,
memory_demanding
=
lookup_config_from_database
(
locals
().
get
(
"database"
)
)
def
load
(
annotation_type
,
fixed_positions
=
None
):
return
arcface_baseline
(
embedding
=
Resnet50_VGG2_ArcFace_2021
(
memory_demanding
=
memory_demanding
),
annotation_type
=
annotation_type
,
fixed_positions
=
fixed_positions
,
def
load
(
annotation_type
,
fixed_positions
=
None
,
memory_demanding
=
None
):
return
resnet50_vgg2_arcface_2021
(
annotation_type
,
fixed_positions
,
memory_demanding
)
pipeline
=
load
(
annotation_type
,
fixed_positions
)
transformer
=
pipeline
.
transformer
pipeline
=
load
(
annotation_type
,
fixed_positions
,
memory_demanding
)
bob/bio/face/config/baseline/templates.py
deleted
100644 → 0
View file @
db921441
from
bob.bio.face.utils
import
(
dnn_default_cropping
,
embedding_transformer
,
)
from
bob.bio.base.pipelines.vanilla_biometrics
import
(
Distance
,
VanillaBiometricsPipeline
,
)
def
arcface_baseline
(
embedding
,
annotation_type
,
fixed_positions
=
None
):
# DEFINE CROPPING
cropped_image_size
=
(
112
,
112
)
if
annotation_type
==
"eyes-center"
:
# Hard coding eye positions for backward consistency
cropped_positions
=
{
"leye"
:
(
55
,
81
),
"reye"
:
(
55
,
42
),
}
else
:
cropped_positions
=
dnn_default_cropping
(
cropped_image_size
,
annotation_type
)
transformer
=
embedding_transformer
(
cropped_image_size
=
cropped_image_size
,
embedding
=
embedding
,
cropped_positions
=
cropped_positions
,
fixed_positions
=
fixed_positions
,
color_channel
=
"rgb"
,
annotator
=
"mtcnn"
,
)
algorithm
=
Distance
()
return
VanillaBiometricsPipeline
(
transformer
,
algorithm
)
def
facenet_baseline
(
embedding
,
annotation_type
,
fixed_positions
=
None
):
# DEFINE CROPPING
cropped_image_size
=
(
160
,
160
)
cropped_positions
=
dnn_default_cropping
(
cropped_image_size
,
annotation_type
)
# ASSEMBLE TRANSFORMER
transformer
=
embedding_transformer
(
cropped_image_size
=
cropped_image_size
,
embedding
=
embedding
,
cropped_positions
=
cropped_positions
,
fixed_positions
=
fixed_positions
,
color_channel
=
"rgb"
,
annotator
=
"mtcnn"
,
)
algorithm
=
Distance
()
return
VanillaBiometricsPipeline
(
transformer
,
algorithm
)
bob/bio/face/config/baseline/tf2_inception_resnet.py
deleted
100644 → 0
View file @
db921441
from
bob.extension
import
rc
from
bob.bio.face.embeddings.tf2_inception_resnet
import
InceptionResnetv2
from
bob.bio.face.utils
import
lookup_config_from_database
from
bob.bio.face.config.baseline.templates
import
facenet_baseline
annotation_type
,
fixed_positions
,
memory_demanding
=
lookup_config_from_database
(
locals
().
get
(
"database"
)
)
def
load
(
annotation_type
,
fixed_positions
=
None
):
extractor_path
=
rc
[
"bob.bio.face.tf2.casia-webface-inception-v2"
]
embedding
=
InceptionResnetv2
(
checkpoint_path
=
extractor_path
,
memory_demanding
=
memory_demanding
)
return
facenet_baseline
(
embedding
=
embedding
,
annotation_type
=
annotation_type
,
fixed_positions
=
fixed_positions
,
)
pipeline
=
load
(
annotation_type
,
fixed_positions
)
transformer
=
pipeline
.
transformer
bob/bio/face/config/baseline/tf_pipe.py
deleted
100644 → 0