"""Extracts features using deep face recognition models under MxNet Interfaces.
Users can download the pretrained face recognition models with MxNet Interface. The path to downloaded models should be specified before running the extractor (usually before running the pipeline file that includes the extractor). That is, set config of the model frame to :py:class:`bob.extractor_model.mxnet`, and set config of the parameters to :py:class:`bob.extractor_weights.mxnet`.
.. code-block:: sh
$ bob config set bob.extractor_model.mxnet /PATH/TO/MODEL/
$ bob config set bob.extractor_weights.mxnet /PATH/TO/WEIGHTS/
"""Extracts features using deep face recognition models under OpenCV Interface
Users can download the pretrained face recognition models with OpenCV Interface. The path to downloaded models should be specified before running the extractor (usually before running the pipeline file that includes the extractor). That is, set config of the model frame to :py:class:`bob.extractor_model.opencv`, and set config of the parameters to :py:class:`bob.extractor_weights.opencv`.
.. code-block:: sh
$ bob config set bob.extractor_model.opencv /PATH/TO/MODEL/
$ bob config set bob.extractor_weights.opencv /PATH/TO/WEIGHTS/
The extracted features can be combined with different the algorithms.
.. note::
This structure only can be used for CAFFE pretrained model.
"""Extracts features using deep face recognition models under PyTorch Interface, especially for the models and weights that need to load by hand.
Users can download the pretrained face recognition models with PyTorch Interface. The path to downloaded models should be specified before running the extractor (usually before running the pipeline file that includes the extractor). That is, set config of the model frame to :py:class:`bob.extractor_model.pytorch`, and set config of the parameters to :py:class:`bob.extractor_weights.pytorch`.
.. code-block:: sh
$ bob config set bob.extractor_model.pytorch /PATH/TO/MODEL/
$ bob config set bob.extractor_weights.pytorch /PATH/TO/WEIGHTS/
The extracted features can be combined with different the algorithms.
"""Extracts features using deep face recognition with registered model frames in the PyTorch Library.
Users can import the pretrained face recognition models from PyTorch library. The model should be called in the pipeline. Example: `facenet_pytorch <https://github.com/timesler/facenet-pytorch>`_
The extracted features can be combined with different the algorithms.
"""Extracts features using deep face recognition models under TensorFlow Interface.
Users can download the pretrained face recognition models with TensorFlow Interface. The path to downloaded models should be specified before running the extractor (usually before running the pipeline file that includes the extractor). That is, set config of the model to :py:class:`bob.extractor_model.tf`.
.. code-block:: sh
$ bob config set bob.extractor_model.tf /PATH/TO/MODEL/
The extracted features can be combined with different the algorithms.