Skip to content
Snippets Groups Projects
Commit 0e3d6af0 authored by Tiago de Freitas Pereira's avatar Tiago de Freitas Pereira
Browse files

Removed examples

parent ebc2cb4c
No related branches found
No related tags found
2 merge requests!185Wrappers and aggregators,!180[dask] Preparing bob.bio.base for dask pipelines
from bob.bio.base.pipelines.vanilla_biometrics.implemented import CheckpointDistance
from bob.bio.base.pipelines.vanilla_biometrics.legacy import (
DatabaseConnector,
Preprocessor,
Extractor,
AlgorithmAsBioAlg,
)
from bob.bio.face.database.mobio import MobioBioDatabase
from bob.bio.face.preprocessor import FaceCrop
from bob.extension import rc
from bob.pipelines.transformers import CheckpointSampleLinearize, CheckpointSamplePCA
from sklearn.pipeline import make_pipeline
import functools
import os
import bob.bio.face
import math
base_dir = "example"
database = DatabaseConnector(
MobioBioDatabase(
original_directory=rc["bob.db.mobio.directory"],
annotation_directory=rc["bob.db.mobio.annotation_directory"],
original_extension=".png",
protocol="mobile0-male",
)
)
database.allow_score_multiple_references = True
# Using face crop
CROPPED_IMAGE_HEIGHT = 80
CROPPED_IMAGE_WIDTH = CROPPED_IMAGE_HEIGHT * 4 // 5
# eye positions for frontal images
RIGHT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 - 1)
LEFT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 * 3)
# FaceCrop
preprocessor = bob.bio.face.preprocessor.INormLBP(
face_cropper=bob.bio.face.preprocessor.FaceCrop(
cropped_image_size=(CROPPED_IMAGE_HEIGHT, CROPPED_IMAGE_WIDTH),
cropped_positions={"leye": LEFT_EYE_POS, "reye": RIGHT_EYE_POS},
color_channel="gray",
),
)
extractor = bob.bio.face.extractor.GridGraph(
# Gabor parameters
gabor_sigma=math.sqrt(2.0) * math.pi,
# what kind of information to extract
normalize_gabor_jets=True,
# setup of the fixed grid
node_distance=(8, 8),
)
transformer = make_pipeline(
Preprocessor(preprocessor, features_dir=os.path.join(base_dir, "face_cropper")),
Extractor(extractor, features_dir=os.path.join(base_dir, "gabor_graph")),
)
## algorithm
gabor_jet = bob.bio.face.algorithm.GaborJet(
gabor_jet_similarity_type="PhaseDiffPlusCanberra",
multiple_feature_scoring="max_jet",
gabor_sigma=math.sqrt(2.0) * math.pi,
)
algorithm = AlgorithmAsBioAlg(callable=gabor_jet, features_dir=base_dir, allow_score_multiple_references=True)
#algorithm = AlgorithmAsBioAlg(callable=gabor_jet, features_dir=base_dir)
from bob.bio.base.pipelines.vanilla_biometrics import VanillaBiometrics, dask_vanilla_biometrics
#pipeline = VanillaBiometrics(transformer, algorithm)
#pipeline = dask_vanilla_biometrics(VanillaBiometrics(transformer, algorithm), npartitions=48)
pipeline = VanillaBiometrics(transformer, algorithm)
from bob.bio.face.database import AtntBioDatabase
from bob.bio.gmm.algorithm import ISV
from bob.bio.face.preprocessor import FaceCrop
from sklearn.pipeline import make_pipeline
from bob.bio.base.pipelines.vanilla_biometrics.legacy import DatabaseConnector, Preprocessor, AlgorithmAsTransformer, AlgorithmAsBioAlg, Extractor
import functools
from bob.bio.base.pipelines.vanilla_biometrics.implemented import (
Distance,
CheckpointDistance,
)
import os
# DATABASE
database = DatabaseConnector(
AtntBioDatabase(original_directory="./atnt", protocol="Default"),
)
database.allow_scoring_with_all_biometric_references = True
base_dir = "example/isv"
# PREPROCESSOR LEGACY
# Cropping
CROPPED_IMAGE_HEIGHT = 80
CROPPED_IMAGE_WIDTH = CROPPED_IMAGE_HEIGHT * 4 // 5
# eye positions for frontal images
RIGHT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 - 1)
LEFT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 * 3)
# RANDOM EYES POSITIONS
# I JUST MADE UP THESE NUMBERS
FIXED_RIGHT_EYE_POS = (30, 30)
FIXED_LEFT_EYE_POS = (20, 50)
face_cropper = functools.partial(
FaceCrop,
cropped_image_size=(CROPPED_IMAGE_HEIGHT, CROPPED_IMAGE_WIDTH),
cropped_positions={"leye": LEFT_EYE_POS, "reye": RIGHT_EYE_POS},
fixed_positions={"leye": FIXED_LEFT_EYE_POS, "reye": FIXED_RIGHT_EYE_POS},
)
import bob.bio.face
extractor = functools.partial(
bob.bio.face.extractor.DCTBlocks,
block_size=12,
block_overlap=11,
number_of_dct_coefficients=45,
)
# ALGORITHM LEGACY
isv = functools.partial(ISV, subspace_dimension_of_u=10, number_of_gaussians=2)
model_path=os.path.join(base_dir, "ubm_u.hdf5")
transformer = make_pipeline(
Preprocessor(callable=face_cropper, features_dir=os.path.join(base_dir,"face_crop")),
Extractor(extractor, features_dir=os.path.join(base_dir, "dcts")),
AlgorithmAsTransformer(
callable=isv, features_dir=os.path.join(base_dir,"isv"), model_path=model_path
),
)
algorithm = AlgorithmAsBioAlg(callable=isv, features_dir=base_dir, model_path=model_path)
from bob.bio.base.pipelines.vanilla_biometrics import VanillaBiometrics, dask_vanilla_biometrics
#pipeline = VanillaBiometrics(transformer, algorithm)
pipeline = dask_vanilla_biometrics(VanillaBiometrics(transformer, algorithm))
from bob.bio.face.database import AtntBioDatabase
from bob.bio.base.algorithm import LDA
from bob.bio.face.preprocessor import FaceCrop
from sklearn.pipeline import make_pipeline
from bob.pipelines.transformers import CheckpointSampleLinearize
from bob.bio.base.pipelines.vanilla_biometrics.legacy import DatabaseConnector, Preprocessor, AlgorithmAsTransformer
import functools
from bob.bio.base.pipelines.vanilla_biometrics.implemented import (
Distance,
CheckpointDistance,
)
# DATABASE
database = DatabaseConnector(
AtntBioDatabase(original_directory="./atnt", protocol="Default"),
)
# PREPROCESSOR LEGACY
# Cropping
CROPPED_IMAGE_HEIGHT = 80
CROPPED_IMAGE_WIDTH = CROPPED_IMAGE_HEIGHT * 4 // 5
# eye positions for frontal images
RIGHT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 - 1)
LEFT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 * 3)
# RANDOM EYES POSITIONS
# I JUST MADE UP THESE NUMBERS
FIXED_RIGHT_EYE_POS = (30, 30)
FIXED_LEFT_EYE_POS = (20, 50)
face_cropper = functools.partial(
FaceCrop,
cropped_image_size=(CROPPED_IMAGE_HEIGHT, CROPPED_IMAGE_WIDTH),
cropped_positions={"leye": LEFT_EYE_POS, "reye": RIGHT_EYE_POS},
fixed_positions={"leye": FIXED_LEFT_EYE_POS, "reye": FIXED_RIGHT_EYE_POS},
)
# ALGORITHM LEGACY
lda = functools.partial(LDA, use_pinv=True, pca_subspace_dimension=0.90)
transformer = make_pipeline(
Preprocessor(callable=face_cropper, features_dir="./example/transformer0"),
CheckpointSampleLinearize(features_dir="./example/transformer1"),
AlgorithmAsTransformer(
callable=lda, features_dir="./example/transformer2", model_path="./example/lda_projector.hdf5"
),
)
algorithm = CheckpointDistance(features_dir="./example/")
# algorithm = Distance()
from bob.bio.base.pipelines.vanilla_biometrics import VanillaBiometrics, dask_vanilla_biometrics
#pipeline = VanillaBiometrics(transformer, algorithm)
pipeline = dask_vanilla_biometrics(VanillaBiometrics(transformer, algorithm))
from bob.bio.face.database import AtntBioDatabase
from bob.bio.base.algorithm import LDA
from bob.bio.face.preprocessor import FaceCrop
from sklearn.pipeline import make_pipeline
from bob.pipelines.transformers import CheckpointSampleLinearize
from bob.bio.base.pipelines.vanilla_biometrics.legacy import DatabaseConnector, Preprocessor, AlgorithmAsTransformer, AlgorithmAsBioAlg
import functools
from bob.bio.base.pipelines.vanilla_biometrics.implemented import (
Distance,
CheckpointDistance,
)
import os
# DATABASE
database = DatabaseConnector(
AtntBioDatabase(original_directory="./atnt", protocol="Default"),
)
base_dir = "example"
# PREPROCESSOR LEGACY
# Cropping
CROPPED_IMAGE_HEIGHT = 80
CROPPED_IMAGE_WIDTH = CROPPED_IMAGE_HEIGHT * 4 // 5
# eye positions for frontal images
RIGHT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 - 1)
LEFT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 * 3)
# RANDOM EYES POSITIONS
# I JUST MADE UP THESE NUMBERS
FIXED_RIGHT_EYE_POS = (30, 30)
FIXED_LEFT_EYE_POS = (20, 50)
face_cropper = functools.partial(
FaceCrop,
cropped_image_size=(CROPPED_IMAGE_HEIGHT, CROPPED_IMAGE_WIDTH),
cropped_positions={"leye": LEFT_EYE_POS, "reye": RIGHT_EYE_POS},
fixed_positions={"leye": FIXED_LEFT_EYE_POS, "reye": FIXED_RIGHT_EYE_POS},
)
# ALGORITHM LEGACY
lda = functools.partial(LDA, use_pinv=True, pca_subspace_dimension=0.90)
transformer = make_pipeline(
Preprocessor(callable=face_cropper, features_dir=os.path.join(base_dir,"transformer0")),
CheckpointSampleLinearize(features_dir=os.path.join(base_dir,"transformer1")),
AlgorithmAsTransformer(
callable=lda, features_dir=os.path.join(base_dir,"transformer2"), model_path=os.path.join(base_dir, "lda.hdf5")
),
)
algorithm = AlgorithmAsBioAlg(callable=lda, features_dir="./example/")
from bob.bio.base.pipelines.vanilla_biometrics import VanillaBiometrics, dask_vanilla_biometrics
#pipeline = VanillaBiometrics(transformer, algorithm)
pipeline = dask_vanilla_biometrics(VanillaBiometrics(transformer, algorithm))
from bob.bio.base.pipelines.vanilla_biometrics.legacy import DatabaseConnector
from sklearn.pipeline import make_pipeline
from bob.pipelines.transformers import CheckpointSampleLinearize, CheckpointSamplePCA
from bob.bio.base.pipelines.vanilla_biometrics.implemented import (
CheckpointDistance,
)
from bob.bio.face.database import AtntBioDatabase
import os
base_dir = "example"
database = DatabaseConnector(AtntBioDatabase(original_directory="./atnt", protocol="Default"))
database.allow_scoring_with_all_biometric_references = True
transformer = make_pipeline(
CheckpointSampleLinearize(features_dir=os.path.join(base_dir, "linearize")),
CheckpointSamplePCA(
features_dir=os.path.join(base_dir, "pca_features"), model_path=os.path.join(base_dir, "pca.pkl")
),
)
algorithm = CheckpointDistance(features_dir=base_dir, allow_score_multiple_references=True)
# # comment out the code below to disable dask
from bob.pipelines.mixins import estimator_dask_it, mix_me_up
from bob.bio.base.pipelines.vanilla_biometrics.mixins import (
BioAlgDaskMixin,
)
from bob.bio.base.pipelines.vanilla_biometrics import VanillaBiometrics, dask_vanilla_biometrics
pipeline = VanillaBiometrics(transformer, algorithm)
#pipeline = dask_vanilla_biometrics(VanillaBiometrics(transformer, algorithm))
from bob.bio.base.pipelines.vanilla_biometrics.implemented import (
CheckpointDistance,
)
from bob.bio.base.pipelines.vanilla_biometrics.legacy import (
DatabaseConnector,
Preprocessor,
)
from bob.bio.face.database.mobio import MobioBioDatabase
from bob.bio.face.preprocessor import FaceCrop
from bob.extension import rc
from bob.pipelines.transformers import CheckpointSampleLinearize, CheckpointSamplePCA
from sklearn.pipeline import make_pipeline
import functools
database = DatabaseConnector(
MobioBioDatabase(
original_directory=rc["bob.db.mobio.directory"],
annotation_directory=rc["bob.db.mobio.annotation_directory"],
original_extension=".png",
protocol="mobile0-male",
)
)
# Using face crop
CROPPED_IMAGE_HEIGHT = 80
CROPPED_IMAGE_WIDTH = CROPPED_IMAGE_HEIGHT * 4 // 5
# eye positions for frontal images
RIGHT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 - 1)
LEFT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 * 3)
# FaceCrop
preprocessor = functools.partial(
FaceCrop,
cropped_image_size=(CROPPED_IMAGE_HEIGHT, CROPPED_IMAGE_WIDTH),
cropped_positions={"leye": LEFT_EYE_POS, "reye": RIGHT_EYE_POS},
)
transformer = make_pipeline(
Preprocessor(preprocessor, features_dir="./example/extractor0"),
CheckpointSampleLinearize(features_dir="./example/extractor1"),
CheckpointSamplePCA(
features_dir="./example/extractor2", model_path="./example/pca.pkl"
),
)
algorithm = CheckpointDistance(features_dir="./example/")
from bob.bio.base.pipelines.vanilla_biometrics import VanillaBiometrics, dask_vanilla_biometrics
#pipeline = VanillaBiometrics(transformer, algorithm)
pipeline = dask_vanilla_biometrics(VanillaBiometrics(transformer, algorithm), npartitions=48)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment