From 0e3d6af0dab3d474c7ab9501deb7c5ac007362b9 Mon Sep 17 00:00:00 2001 From: Tiago Freitas Pereira <tiagofrepereira@gmail.com> Date: Sat, 2 May 2020 16:37:28 +0200 Subject: [PATCH] Removed examples --- .../base/config/examples/gabor_mobio-male.py | 76 ------------------- .../examples/isv_atnt_legacy_all_legacy.py | 75 ------------------ .../base/config/examples/lda_atnt_legacy.py | 65 ---------------- .../examples/lda_atnt_legacy_all_legacy.py | 64 ---------------- bob/bio/base/config/examples/pca_atnt.py | 33 -------- .../base/config/examples/pca_mobio-male.py | 50 ------------ 6 files changed, 363 deletions(-) delete mode 100644 bob/bio/base/config/examples/gabor_mobio-male.py delete mode 100644 bob/bio/base/config/examples/isv_atnt_legacy_all_legacy.py delete mode 100644 bob/bio/base/config/examples/lda_atnt_legacy.py delete mode 100644 bob/bio/base/config/examples/lda_atnt_legacy_all_legacy.py delete mode 100644 bob/bio/base/config/examples/pca_atnt.py delete mode 100644 bob/bio/base/config/examples/pca_mobio-male.py diff --git a/bob/bio/base/config/examples/gabor_mobio-male.py b/bob/bio/base/config/examples/gabor_mobio-male.py deleted file mode 100644 index 6f224e39..00000000 --- a/bob/bio/base/config/examples/gabor_mobio-male.py +++ /dev/null @@ -1,76 +0,0 @@ -from bob.bio.base.pipelines.vanilla_biometrics.implemented import CheckpointDistance -from bob.bio.base.pipelines.vanilla_biometrics.legacy import ( - DatabaseConnector, - Preprocessor, - Extractor, - AlgorithmAsBioAlg, -) -from bob.bio.face.database.mobio import MobioBioDatabase -from bob.bio.face.preprocessor import FaceCrop -from bob.extension import rc -from bob.pipelines.transformers import CheckpointSampleLinearize, CheckpointSamplePCA -from sklearn.pipeline import make_pipeline -import functools -import os -import bob.bio.face -import math - -base_dir = "example" - - -database = DatabaseConnector( - MobioBioDatabase( - original_directory=rc["bob.db.mobio.directory"], - annotation_directory=rc["bob.db.mobio.annotation_directory"], - original_extension=".png", - protocol="mobile0-male", - ) -) -database.allow_score_multiple_references = True - -# Using face crop -CROPPED_IMAGE_HEIGHT = 80 -CROPPED_IMAGE_WIDTH = CROPPED_IMAGE_HEIGHT * 4 // 5 -# eye positions for frontal images -RIGHT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 - 1) -LEFT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 * 3) - -# FaceCrop -preprocessor = bob.bio.face.preprocessor.INormLBP( - face_cropper=bob.bio.face.preprocessor.FaceCrop( - cropped_image_size=(CROPPED_IMAGE_HEIGHT, CROPPED_IMAGE_WIDTH), - cropped_positions={"leye": LEFT_EYE_POS, "reye": RIGHT_EYE_POS}, - color_channel="gray", - ), -) - -extractor = bob.bio.face.extractor.GridGraph( - # Gabor parameters - gabor_sigma=math.sqrt(2.0) * math.pi, - # what kind of information to extract - normalize_gabor_jets=True, - # setup of the fixed grid - node_distance=(8, 8), -) - -transformer = make_pipeline( - Preprocessor(preprocessor, features_dir=os.path.join(base_dir, "face_cropper")), - Extractor(extractor, features_dir=os.path.join(base_dir, "gabor_graph")), -) - - -## algorithm -gabor_jet = bob.bio.face.algorithm.GaborJet( - gabor_jet_similarity_type="PhaseDiffPlusCanberra", - multiple_feature_scoring="max_jet", - gabor_sigma=math.sqrt(2.0) * math.pi, -) - -algorithm = AlgorithmAsBioAlg(callable=gabor_jet, features_dir=base_dir, allow_score_multiple_references=True) -#algorithm = AlgorithmAsBioAlg(callable=gabor_jet, features_dir=base_dir) -from bob.bio.base.pipelines.vanilla_biometrics import VanillaBiometrics, dask_vanilla_biometrics - -#pipeline = VanillaBiometrics(transformer, algorithm) -#pipeline = dask_vanilla_biometrics(VanillaBiometrics(transformer, algorithm), npartitions=48) -pipeline = VanillaBiometrics(transformer, algorithm) - diff --git a/bob/bio/base/config/examples/isv_atnt_legacy_all_legacy.py b/bob/bio/base/config/examples/isv_atnt_legacy_all_legacy.py deleted file mode 100644 index 41ee5f2c..00000000 --- a/bob/bio/base/config/examples/isv_atnt_legacy_all_legacy.py +++ /dev/null @@ -1,75 +0,0 @@ -from bob.bio.face.database import AtntBioDatabase -from bob.bio.gmm.algorithm import ISV -from bob.bio.face.preprocessor import FaceCrop -from sklearn.pipeline import make_pipeline -from bob.bio.base.pipelines.vanilla_biometrics.legacy import DatabaseConnector, Preprocessor, AlgorithmAsTransformer, AlgorithmAsBioAlg, Extractor -import functools -from bob.bio.base.pipelines.vanilla_biometrics.implemented import ( - Distance, - CheckpointDistance, -) -import os - -# DATABASE -database = DatabaseConnector( - AtntBioDatabase(original_directory="./atnt", protocol="Default"), -) -database.allow_scoring_with_all_biometric_references = True - -base_dir = "example/isv" - -# PREPROCESSOR LEGACY - -# Cropping -CROPPED_IMAGE_HEIGHT = 80 -CROPPED_IMAGE_WIDTH = CROPPED_IMAGE_HEIGHT * 4 // 5 - -# eye positions for frontal images -RIGHT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 - 1) -LEFT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 * 3) - - -# RANDOM EYES POSITIONS -# I JUST MADE UP THESE NUMBERS -FIXED_RIGHT_EYE_POS = (30, 30) -FIXED_LEFT_EYE_POS = (20, 50) - -face_cropper = functools.partial( - FaceCrop, - cropped_image_size=(CROPPED_IMAGE_HEIGHT, CROPPED_IMAGE_WIDTH), - cropped_positions={"leye": LEFT_EYE_POS, "reye": RIGHT_EYE_POS}, - fixed_positions={"leye": FIXED_LEFT_EYE_POS, "reye": FIXED_RIGHT_EYE_POS}, -) - - -import bob.bio.face - -extractor = functools.partial( - bob.bio.face.extractor.DCTBlocks, - block_size=12, - block_overlap=11, - number_of_dct_coefficients=45, -) - - - -# ALGORITHM LEGACY -isv = functools.partial(ISV, subspace_dimension_of_u=10, number_of_gaussians=2) - -model_path=os.path.join(base_dir, "ubm_u.hdf5") -transformer = make_pipeline( - Preprocessor(callable=face_cropper, features_dir=os.path.join(base_dir,"face_crop")), - Extractor(extractor, features_dir=os.path.join(base_dir, "dcts")), - AlgorithmAsTransformer( - callable=isv, features_dir=os.path.join(base_dir,"isv"), model_path=model_path - ), -) - - -algorithm = AlgorithmAsBioAlg(callable=isv, features_dir=base_dir, model_path=model_path) - - -from bob.bio.base.pipelines.vanilla_biometrics import VanillaBiometrics, dask_vanilla_biometrics - -#pipeline = VanillaBiometrics(transformer, algorithm) -pipeline = dask_vanilla_biometrics(VanillaBiometrics(transformer, algorithm)) diff --git a/bob/bio/base/config/examples/lda_atnt_legacy.py b/bob/bio/base/config/examples/lda_atnt_legacy.py deleted file mode 100644 index dd6f93ed..00000000 --- a/bob/bio/base/config/examples/lda_atnt_legacy.py +++ /dev/null @@ -1,65 +0,0 @@ -from bob.bio.face.database import AtntBioDatabase -from bob.bio.base.algorithm import LDA -from bob.bio.face.preprocessor import FaceCrop -from sklearn.pipeline import make_pipeline -from bob.pipelines.transformers import CheckpointSampleLinearize -from bob.bio.base.pipelines.vanilla_biometrics.legacy import DatabaseConnector, Preprocessor, AlgorithmAsTransformer -import functools -from bob.bio.base.pipelines.vanilla_biometrics.implemented import ( - Distance, - CheckpointDistance, -) - -# DATABASE - -database = DatabaseConnector( - AtntBioDatabase(original_directory="./atnt", protocol="Default"), -) - - -# PREPROCESSOR LEGACY - -# Cropping -CROPPED_IMAGE_HEIGHT = 80 -CROPPED_IMAGE_WIDTH = CROPPED_IMAGE_HEIGHT * 4 // 5 - -# eye positions for frontal images -RIGHT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 - 1) -LEFT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 * 3) - - -# RANDOM EYES POSITIONS -# I JUST MADE UP THESE NUMBERS -FIXED_RIGHT_EYE_POS = (30, 30) -FIXED_LEFT_EYE_POS = (20, 50) - -face_cropper = functools.partial( - FaceCrop, - cropped_image_size=(CROPPED_IMAGE_HEIGHT, CROPPED_IMAGE_WIDTH), - cropped_positions={"leye": LEFT_EYE_POS, "reye": RIGHT_EYE_POS}, - fixed_positions={"leye": FIXED_LEFT_EYE_POS, "reye": FIXED_RIGHT_EYE_POS}, -) - -# ALGORITHM LEGACY - -lda = functools.partial(LDA, use_pinv=True, pca_subspace_dimension=0.90) - - -transformer = make_pipeline( - Preprocessor(callable=face_cropper, features_dir="./example/transformer0"), - CheckpointSampleLinearize(features_dir="./example/transformer1"), - AlgorithmAsTransformer( - callable=lda, features_dir="./example/transformer2", model_path="./example/lda_projector.hdf5" - ), -) - - - -algorithm = CheckpointDistance(features_dir="./example/") -# algorithm = Distance() - - -from bob.bio.base.pipelines.vanilla_biometrics import VanillaBiometrics, dask_vanilla_biometrics - -#pipeline = VanillaBiometrics(transformer, algorithm) -pipeline = dask_vanilla_biometrics(VanillaBiometrics(transformer, algorithm)) diff --git a/bob/bio/base/config/examples/lda_atnt_legacy_all_legacy.py b/bob/bio/base/config/examples/lda_atnt_legacy_all_legacy.py deleted file mode 100644 index d9736430..00000000 --- a/bob/bio/base/config/examples/lda_atnt_legacy_all_legacy.py +++ /dev/null @@ -1,64 +0,0 @@ -from bob.bio.face.database import AtntBioDatabase -from bob.bio.base.algorithm import LDA -from bob.bio.face.preprocessor import FaceCrop -from sklearn.pipeline import make_pipeline -from bob.pipelines.transformers import CheckpointSampleLinearize -from bob.bio.base.pipelines.vanilla_biometrics.legacy import DatabaseConnector, Preprocessor, AlgorithmAsTransformer, AlgorithmAsBioAlg -import functools -from bob.bio.base.pipelines.vanilla_biometrics.implemented import ( - Distance, - CheckpointDistance, -) -import os - -# DATABASE -database = DatabaseConnector( - AtntBioDatabase(original_directory="./atnt", protocol="Default"), -) - -base_dir = "example" - -# PREPROCESSOR LEGACY - -# Cropping -CROPPED_IMAGE_HEIGHT = 80 -CROPPED_IMAGE_WIDTH = CROPPED_IMAGE_HEIGHT * 4 // 5 - -# eye positions for frontal images -RIGHT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 - 1) -LEFT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 * 3) - - -# RANDOM EYES POSITIONS -# I JUST MADE UP THESE NUMBERS -FIXED_RIGHT_EYE_POS = (30, 30) -FIXED_LEFT_EYE_POS = (20, 50) - -face_cropper = functools.partial( - FaceCrop, - cropped_image_size=(CROPPED_IMAGE_HEIGHT, CROPPED_IMAGE_WIDTH), - cropped_positions={"leye": LEFT_EYE_POS, "reye": RIGHT_EYE_POS}, - fixed_positions={"leye": FIXED_LEFT_EYE_POS, "reye": FIXED_RIGHT_EYE_POS}, -) - -# ALGORITHM LEGACY - -lda = functools.partial(LDA, use_pinv=True, pca_subspace_dimension=0.90) - - -transformer = make_pipeline( - Preprocessor(callable=face_cropper, features_dir=os.path.join(base_dir,"transformer0")), - CheckpointSampleLinearize(features_dir=os.path.join(base_dir,"transformer1")), - AlgorithmAsTransformer( - callable=lda, features_dir=os.path.join(base_dir,"transformer2"), model_path=os.path.join(base_dir, "lda.hdf5") - ), -) - - -algorithm = AlgorithmAsBioAlg(callable=lda, features_dir="./example/") - - -from bob.bio.base.pipelines.vanilla_biometrics import VanillaBiometrics, dask_vanilla_biometrics - -#pipeline = VanillaBiometrics(transformer, algorithm) -pipeline = dask_vanilla_biometrics(VanillaBiometrics(transformer, algorithm)) diff --git a/bob/bio/base/config/examples/pca_atnt.py b/bob/bio/base/config/examples/pca_atnt.py deleted file mode 100644 index e75daf27..00000000 --- a/bob/bio/base/config/examples/pca_atnt.py +++ /dev/null @@ -1,33 +0,0 @@ -from bob.bio.base.pipelines.vanilla_biometrics.legacy import DatabaseConnector -from sklearn.pipeline import make_pipeline -from bob.pipelines.transformers import CheckpointSampleLinearize, CheckpointSamplePCA -from bob.bio.base.pipelines.vanilla_biometrics.implemented import ( - CheckpointDistance, -) -from bob.bio.face.database import AtntBioDatabase -import os - - -base_dir = "example" - -database = DatabaseConnector(AtntBioDatabase(original_directory="./atnt", protocol="Default")) -database.allow_scoring_with_all_biometric_references = True - -transformer = make_pipeline( - CheckpointSampleLinearize(features_dir=os.path.join(base_dir, "linearize")), - CheckpointSamplePCA( - features_dir=os.path.join(base_dir, "pca_features"), model_path=os.path.join(base_dir, "pca.pkl") - ), -) -algorithm = CheckpointDistance(features_dir=base_dir, allow_score_multiple_references=True) - -# # comment out the code below to disable dask -from bob.pipelines.mixins import estimator_dask_it, mix_me_up -from bob.bio.base.pipelines.vanilla_biometrics.mixins import ( - BioAlgDaskMixin, -) - -from bob.bio.base.pipelines.vanilla_biometrics import VanillaBiometrics, dask_vanilla_biometrics - -pipeline = VanillaBiometrics(transformer, algorithm) -#pipeline = dask_vanilla_biometrics(VanillaBiometrics(transformer, algorithm)) diff --git a/bob/bio/base/config/examples/pca_mobio-male.py b/bob/bio/base/config/examples/pca_mobio-male.py deleted file mode 100644 index 668a1e6f..00000000 --- a/bob/bio/base/config/examples/pca_mobio-male.py +++ /dev/null @@ -1,50 +0,0 @@ -from bob.bio.base.pipelines.vanilla_biometrics.implemented import ( - CheckpointDistance, -) -from bob.bio.base.pipelines.vanilla_biometrics.legacy import ( - DatabaseConnector, - Preprocessor, -) -from bob.bio.face.database.mobio import MobioBioDatabase -from bob.bio.face.preprocessor import FaceCrop -from bob.extension import rc -from bob.pipelines.transformers import CheckpointSampleLinearize, CheckpointSamplePCA -from sklearn.pipeline import make_pipeline -import functools - - -database = DatabaseConnector( - MobioBioDatabase( - original_directory=rc["bob.db.mobio.directory"], - annotation_directory=rc["bob.db.mobio.annotation_directory"], - original_extension=".png", - protocol="mobile0-male", - ) -) - -# Using face crop -CROPPED_IMAGE_HEIGHT = 80 -CROPPED_IMAGE_WIDTH = CROPPED_IMAGE_HEIGHT * 4 // 5 -# eye positions for frontal images -RIGHT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 - 1) -LEFT_EYE_POS = (CROPPED_IMAGE_HEIGHT // 5, CROPPED_IMAGE_WIDTH // 4 * 3) -# FaceCrop -preprocessor = functools.partial( - FaceCrop, - cropped_image_size=(CROPPED_IMAGE_HEIGHT, CROPPED_IMAGE_WIDTH), - cropped_positions={"leye": LEFT_EYE_POS, "reye": RIGHT_EYE_POS}, -) - -transformer = make_pipeline( - Preprocessor(preprocessor, features_dir="./example/extractor0"), - CheckpointSampleLinearize(features_dir="./example/extractor1"), - CheckpointSamplePCA( - features_dir="./example/extractor2", model_path="./example/pca.pkl" - ), -) -algorithm = CheckpointDistance(features_dir="./example/") - -from bob.bio.base.pipelines.vanilla_biometrics import VanillaBiometrics, dask_vanilla_biometrics - -#pipeline = VanillaBiometrics(transformer, algorithm) -pipeline = dask_vanilla_biometrics(VanillaBiometrics(transformer, algorithm), npartitions=48) -- GitLab