Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
pbdlib-matlab
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
rli
pbdlib-matlab
Commits
9636aae1
Commit
9636aae1
authored
3 years ago
by
Sylvain CALINON
Browse files
Options
Downloads
Patches
Plain Diff
GMM to encode augmented covariance datapoints added
parent
220bd624
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
demos/demo_Riemannian_SPD_GMM_augmSigma01.m
+316
-0
316 additions, 0 deletions
demos/demo_Riemannian_SPD_GMM_augmSigma01.m
with
316 additions
and
0 deletions
demos/demo_Riemannian_SPD_GMM_augmSigma01.m
0 → 100644
+
316
−
0
View file @
9636aae1
function
demo_Riemannian_SPD_GMM_augmSigma01
% GMM to encode ellipsoid datapoints (centers and covariance matrices) by relying on
% augmented covariance embeddings and Riemannian manifold
%
% If this code is useful for your research, please cite the related publication:
% @article{Calinon20RAM,
% author="Calinon, S.",
% title="Gaussians on {R}iemannian Manifolds: Applications for Robot Learning and Adaptive Control",
% journal="{IEEE} Robotics and Automation Magazine ({RAM})",
% year="2020",
% month="June",
% volume="27",
% number="2",
% pages="33--45",
% doi="10.1109/MRA.2020.2980548"
% }
%
% Copyright (c) 2019 Idiap Research Institute, https://idiap.ch/
% Written by Noémie Jaquier and Sylvain Calinon
%
% This file is part of PbDlib, https://www.idiap.ch/software/pbdlib/
%
% PbDlib is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License version 3 as
% published by the Free Software Foundation.
%
% PbDlib is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with PbDlib. If not, see <https://www.gnu.org/licenses/>.
addpath
(
'./m_fcts/'
);
%% Parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
nbData
=
30
;
%Number of datapoints
nbSamples
=
1
;
%Number of demonstrations
nbIter
=
5
;
%Number of iteration for the Gauss Newton algorithm
nbIterEM
=
5
;
%Number of iteration for the EM algorithm
model
.
nbStates
=
3
;
%Number of states in the GMM
model
.
nbVar
=
3
;
%Dimension of the tangent space
model
.
nbVarVec
=
model
.
nbVar
+
model
.
nbVar
*
(
model
.
nbVar
-
1
)/
2
;
% Dimension in vector form
model
.
params_diagRegFact
=
1E1
;
%Regularization of covariance
% %% Generate augmented covariance data
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% for i=1:model.nbStates
% S(:,:,i) = cov(randn(3,model.nbVar-1));
% end
% m = randn(model.nbVar-1, model.nbStates) * 1E0;
% x = zeros(model.nbVar, model.nbVar, nbData*nbSamples);
% xMu = zeros(model.nbVar-1, nbData*nbSamples);
% xSigma = zeros(model.nbVar-1, model.nbVar-1, nbData*nbSamples);
% idList = repmat(kron(1:model.nbStates,ones(1,ceil(nbData/model.nbStates))),1,nbSamples);
% for t=1:nbData*nbSamples
% xn = randn(model.nbVar-1,5) * 3E-1;
% xMu(:,t) = m(:,idList(t)) + randn(model.nbVar-1,1) * 3E-1;
% xSigma(:,:,t) = S(:,:,idList(t)) + cov(xn');
% x(:,:,t) = [xSigma(:,:,t) + xMu(:,t)*xMu(:,t)', xMu(:,t); xMu(:,t)', 1];
% end
% xvec = reshape(x, [model.nbVar^2, nbData*nbSamples]);
% uvec = logmap_vec(xvec, reshape(e0,[model.nbVar^2,1]));
%% Generate augmented covariance datapoints from handwriting data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
demos
=
[];
load
(
'data/2Dletters/S.mat'
);
Data
=
[];
for
n
=
1
:
nbSamples
s
(
n
)
.
Data
=
spline
(
1
:
size
(
demos
{
n
}
.
pos
,
2
),
demos
{
n
}
.
pos
,
linspace
(
1
,
size
(
demos
{
n
}
.
pos
,
2
),
nbData
));
%Resampling
Data
=
[
Data
[
s
(
n
)
.
Data
]];
end
for
t
=
1
:
nbData
*
nbSamples
xMu
(:,
t
)
=
Data
(:,
t
);
xSigma
(:,:,
t
)
=
eye
(
model
.
nbVar
-
1
)
*
1E1
;
%xSigma(:,:,t) = Data(:,t) * Data(:,t)' + eye(model.nbVar-1) * 1E0;
X
(:,:,
t
)
=
[
xSigma
(:,:,
t
)
+
xMu
(:,
t
)
*
xMu
(:,
t
)
', xMu(:,t); xMu(:,t)'
,
1
];
% X(:,:,t) = [xSigma(:,:,t) + xMu(:,t)*xMu(:,t)', xMu(:,t); xMu(:,t)', 1] .* (det(xSigma(:,:,t)).^(-1./(model.nbVar+1)));
end
x
=
symMat2vec
(
X
);
%% GMM parameters estimation (Mandel notation)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
model
=
spd_init_GMM_kbins
(
x
,
model
,
nbSamples
);
model
.
Mu
=
zeros
(
size
(
model
.
MuMan
));
L
=
zeros
(
model
.
nbStates
,
nbData
*
nbSamples
);
xts
=
zeros
(
model
.
nbVarVec
,
nbData
*
nbSamples
,
model
.
nbStates
);
for
nb
=
1
:
nbIterEM
% E-step
for
i
=
1
:
model
.
nbStates
xts
(:,:,
i
)
=
logmap_vec
(
x
,
model
.
MuMan
(:,
i
));
L
(
i
,:)
=
model
.
Priors
(
i
)
*
gaussPDF
(
xts
(:,:,
i
),
model
.
Mu
(:,
i
),
model
.
Sigma
(:,:,
i
));
end
GAMMA
=
L
.
/
repmat
(
sum
(
L
,
1
)
+
realmin
,
model
.
nbStates
,
1
);
H
=
GAMMA
.
/
repmat
(
sum
(
GAMMA
,
2
)
+
realmin
,
1
,
nbData
*
nbSamples
);
% M-step
for
i
=
1
:
model
.
nbStates
% Update Priors
model
.
Priors
(
i
)
=
sum
(
GAMMA
(
i
,:))
/
(
nbData
*
nbSamples
);
% Update MuMan
for
n
=
1
:
nbIter
uTmp
=
logmap_vec
(
x
,
model
.
MuMan
(:,
i
));
uTmpTot
=
sum
(
uTmp
.*
repmat
(
H
(
i
,:),
model
.
nbVarVec
,
1
),
2
);
model
.
MuMan
(:,
i
)
=
expmap_vec
(
uTmpTot
,
model
.
MuMan
(:,
i
));
end
% Update Sigma
model
.
Sigma
(:,:,
i
)
=
uTmp
*
diag
(
H
(
i
,:))
*
uTmp
'
+
eye
(
model
.
nbVarVec
)
.*
model
.
params_diagRegFact
;
end
end
%Convert back augmented covariances to Gaussians
Mu
=
zeros
(
model
.
nbVar
-
1
,
model
.
nbStates
);
Sigma
=
zeros
(
model
.
nbVar
-
1
,
model
.
nbVar
-
1
,
model
.
nbStates
);
MuMan
=
vec2symMat
(
model
.
MuMan
);
for
i
=
1
:
model
.
nbStates
%Mu(:,i) = MuMan(1:end-1,end,i);
%Sigma(:,:,i) = MuMan(1:end-1,1:end-1,i) - Mu(:,i) * Mu(:,i)';
beta
=
MuMan
(
end
,
end
,
i
);
Mu
(:,
i
)
=
MuMan
(
end
,
1
:
end
-
1
,
i
)
.
/
beta
;
Sigma
(:,:,
i
)
=
MuMan
(
1
:
end
-
1
,
1
:
end
-
1
,
i
)
-
beta
*
Mu
(:,
i
)
*
Mu
(:,
i
)
'
;
end
%% Plots
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure
(
'PaperPosition'
,[
0
0
8
8
],
'position'
,[
10
,
10
,
650
,
650
]);
hold
on
;
axis
off
;
clrmap
=
lines
(
model
.
nbStates
);
plotGMM
(
xMu
,
xSigma
,
[
.
6
.
6
.
6
],
.
05
);
for
i
=
1
:
model
.
nbStates
plotGMM
(
Mu
(:,
i
),
Sigma
(:,:,
i
)
*.
8
,
clrmap
(
i
,:),
.
3
);
end
axis
equal
;
%print('-dpng','graphs/demo_Riemannian_cov_GMM_augmSigma01.png');
%Plot activation function
figure
;
hold
on
;
clrmap
=
lines
(
model
.
nbStates
);
for
i
=
1
:
model
.
nbStates
plot
(
1
:
nbData
,
GAMMA
(
i
,:),
'linewidth'
,
2
,
'color'
,
clrmap
(
i
,:));
end
axis
([
1
,
nbData
,
0
,
1.02
]);
set
(
gca
,
'xtick'
,[],
'ytick'
,[]);
xlabel
(
't'
);
ylabel
(
'h_i'
);
end
%% Functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function
X
=
expmap
(
U
,
S
)
% Exponential map (SPD manifold)
N
=
size
(
U
,
3
);
for
n
=
1
:
N
% X(:,:,n) = S^.5 * expm(S^-.5 * U(:,:,n) * S^-.5) * S^.5;
[
v
,
d
]
=
eig
(
S
\
U
(:,:,
n
));
X
(:,:,
n
)
=
S
*
v
*
diag
(
exp
(
diag
(
d
)))
*
v
^-
1
;
end
end
function
x
=
expmap_vec
(
u
,
s
)
% Exponential map (SPD manifold)
U
=
vec2symMat
(
u
);
S
=
vec2symMat
(
s
);
X
=
expmap
(
U
,
S
);
x
=
symMat2vec
(
X
);
end
function
U
=
logmap
(
X
,
S
)
% Logarithm map
N
=
size
(
X
,
3
);
for
n
=
1
:
N
% U(:,:,n) = S^.5 * logm(S^-.5 * X(:,:,n) * S^-.5) * S^.5;
% U(:,:,n) = S * logm(S\X(:,:,n));
[
v
,
d
]
=
eig
(
S
\
X
(:,:,
n
));
U
(:,:,
n
)
=
S
*
v
*
diag
(
log
(
diag
(
d
)))
*
v
^-
1
;
end
end
function
u
=
logmap_vec
(
x
,
s
)
% Exponential map (SPD manifold)
X
=
vec2symMat
(
x
);
S
=
vec2symMat
(
s
);
U
=
logmap
(
X
,
S
);
u
=
symMat2vec
(
U
);
end
function
Ac
=
transp
(
S1
,
S2
)
% Parallel transport (SPD manifold)
% t = 1;
% U = logmap(S2,S1);
% Ac = S1^.5 * expm(0.5 .* t .* S1^-.5 * U * S1^-.5) * S1^-.5;
Ac
=
(
S2
/
S1
)
^.
5
;
end
function
M
=
spdMean
(
setS
,
nbIt
)
% Mean of SPD matrices on the manifold
if
nargin
==
1
nbIt
=
10
;
end
M
=
setS
(:,:,
1
);
for
i
=
1
:
nbIt
L
=
zeros
(
size
(
setS
,
1
),
size
(
setS
,
2
));
for
n
=
1
:
size
(
setS
,
3
)
L
=
L
+
logm
(
M
^-.
5
*
setS
(:,:,
n
)
*
M
^-.
5
);
end
M
=
M
^.
5
*
expm
(
L
.
/
size
(
setS
,
3
))
*
M
^.
5
;
end
end
function
model
=
spd_init_GMM_kbins
(
Data
,
model
,
nbSamples
,
spdDataId
)
% K-Bins initialisation by relying on SPD manifold
nbData
=
size
(
Data
,
2
)
/
nbSamples
;
if
~
isfield
(
model
,
'params_diagRegFact'
)
model
.
params_diagRegFact
=
1E-4
;
%Optional regularization term to avoid numerical instability
end
% Delimit the cluster bins for the first demonstration
tSep
=
round
(
linspace
(
0
,
nbData
,
model
.
nbStates
+
1
));
% Compute statistics for each bin
for
i
=
1
:
model
.
nbStates
id
=
[];
for
n
=
1
:
nbSamples
id
=
[
id
(
n
-
1
)
*
nbData
+
[
tSep
(
i
)
+
1
:
tSep
(
i
+
1
)]];
end
model
.
Priors
(
i
)
=
length
(
id
);
% Mean computed on SPD manifold for parts of the data belonging to the
% manifold
if
nargin
<
4
model
.
MuMan
(:,
i
)
=
symMat2vec
(
spdMean
(
vec2symMat
(
Data
(:,
id
))));
else
model
.
MuMan
(:,
i
)
=
mean
(
Data
(:,
id
),
2
);
if
iscell
(
spdDataId
)
for
c
=
1
:
length
(
spdDataId
)
model
.
MuMan
(
spdDataId
{
c
},
i
)
=
symMat2vec
(
spdMean
(
vec2symMat
(
Data
(
spdDataId
{
c
},
id
)),
3
));
end
else
model
.
MuMan
(
spdDataId
,
i
)
=
symMat2vec
(
spdMean
(
vec2symMat
(
Data
(
spdDataId
,
id
)),
3
));
end
end
% Parts of data belonging to SPD manifold projected to tangent space at
% the mean to compute the covariance tensor in the tangent space
DataTgt
=
zeros
(
size
(
Data
(:,
id
)));
if
nargin
<
4
DataTgt
=
logmap_vec
(
Data
(:,
id
),
model
.
MuMan
(:,
i
));
else
DataTgt
=
Data
(:,
id
);
if
iscell
(
spdDataId
)
for
c
=
1
:
length
(
spdDataId
)
DataTgt
(
spdDataId
{
c
},:)
=
logmap_vec
(
Data
(
spdDataId
{
c
},
id
),
model
.
MuMan
(
spdDataId
{
c
},
i
));
end
else
DataTgt
(
spdDataId
,:)
=
logmap_vec
(
Data
(
spdDataId
,
id
),
model
.
MuMan
(
spdDataId
,
i
));
end
end
model
.
Sigma
(:,:,
i
)
=
cov
(
DataTgt
'
)
+
eye
(
model
.
nbVarVec
)
.*
model
.
params_diagRegFact
;
end
model
.
Priors
=
model
.
Priors
/
sum
(
model
.
Priors
);
end
function
V
=
symMat2vec
(
S
)
% Vectorization of a tensor of symmetric matrix
[
D
,
~
,
N
]
=
size
(
S
);
V
=
[];
for
n
=
1
:
N
v
=
[];
v
=
diag
(
S
(:,:,
n
));
for
d
=
1
:
D
-
1
v
=
[
v
;
sqrt
(
2
)
.*
diag
(
S
(:,:,
n
),
d
)];
% Mandel notation
% v = [v; diag(M,n)]; % Voigt notation
end
V
=
[
V
v
];
end
end
function
S
=
vec2symMat
(
V
)
% Transforms matrix of vectors to tensor of symmetric matrices
[
d
,
N
]
=
size
(
V
);
D
=
(
-
1
+
sqrt
(
1
+
8
*
d
))/
2
;
for
n
=
1
:
N
v
=
V
(:,
n
);
M
=
diag
(
v
(
1
:
D
));
id
=
cumsum
(
fliplr
(
1
:
D
));
for
i
=
1
:
D
-
1
M
=
M
+
diag
(
v
(
id
(
i
)
+
1
:
id
(
i
+
1
)),
i
)
.
/
sqrt
(
2
)
+
diag
(
v
(
id
(
i
)
+
1
:
id
(
i
+
1
)),
-
i
)
.
/
sqrt
(
2
);
% Mandel notation
% M = M + diag(v(id(i+1)+1:id(i+1)),i) + diag(v(id(i+1)+1:id(i+1)),-i); % Voigt notation
end
S
(:,:,
n
)
=
M
;
end
end
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment