Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
pbdlib-matlab
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
rli
pbdlib-matlab
Commits
37a729bd
Commit
37a729bd
authored
10 years ago
by
Milad Malekzadeh
Browse files
Options
Downloads
Patches
Plain Diff
Tab1.
parent
9004f622
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
demo_DSGMR01.m
+43
-43
43 additions, 43 deletions
demo_DSGMR01.m
with
43 additions
and
43 deletions
demo_DSGMR01.m
+
43
−
43
View file @
37a729bd
...
...
@@ -77,9 +77,9 @@ model = EM_tensorGMM(Data, model);
disp
(
'Reproductions with DS-GMR...'
);
DataIn
=
[
1
:
s
(
1
)
.
nbData
]
*
model
.
dt
;
for
n
=
1
:
nbSamples
%Retrieval of attractor path through task-parameterized GMR
a
(
n
)
=
estimateAttractorPath
(
DataIn
,
model
,
s
(
n
));
r
(
n
)
=
reproduction_DS
(
DataIn
,
model
,
a
(
n
),
a
(
n
)
.
currTar
(:,
1
));
%Retrieval of attractor path through task-parameterized GMR
a
(
n
)
=
estimateAttractorPath
(
DataIn
,
model
,
s
(
n
));
r
(
n
)
=
reproduction_DS
(
DataIn
,
model
,
a
(
n
),
a
(
n
)
.
currTar
(:,
1
));
end
...
...
@@ -87,16 +87,16 @@ end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp
(
'New reproductions with DS-GMR...'
);
for
n
=
1
:
nbRepros
for
m
=
1
:
model
.
nbFrames
%Random generation of new task parameters
id
=
ceil
(
rand
(
2
,
1
)
*
nbSamples
);
w
=
rand
(
2
);
w
=
w
/
sum
(
w
);
rTmp
.
p
(
m
)
.
b
=
s
(
id
(
1
))
.
p
(
m
)
.
b
*
w
(
1
)
+
s
(
id
(
2
))
.
p
(
m
)
.
b
*
w
(
2
);
rTmp
.
p
(
m
)
.
A
=
s
(
id
(
1
))
.
p
(
m
)
.
A
*
w
(
1
)
+
s
(
id
(
2
))
.
p
(
m
)
.
A
*
w
(
2
);
end
%Retrieval of attractor path through task-parameterized GMR
anew
(
n
)
=
estimateAttractorPath
(
DataIn
,
model
,
rTmp
);
rnew
(
n
)
=
reproduction_DS
(
DataIn
,
model
,
anew
(
n
),
anew
(
n
)
.
currTar
(:,
1
));
for
m
=
1
:
model
.
nbFrames
%Random generation of new task parameters
id
=
ceil
(
rand
(
2
,
1
)
*
nbSamples
);
w
=
rand
(
2
);
w
=
w
/
sum
(
w
);
rTmp
.
p
(
m
)
.
b
=
s
(
id
(
1
))
.
p
(
m
)
.
b
*
w
(
1
)
+
s
(
id
(
2
))
.
p
(
m
)
.
b
*
w
(
2
);
rTmp
.
p
(
m
)
.
A
=
s
(
id
(
1
))
.
p
(
m
)
.
A
*
w
(
1
)
+
s
(
id
(
2
))
.
p
(
m
)
.
A
*
w
(
2
);
end
%Retrieval of attractor path through task-parameterized GMR
anew
(
n
)
=
estimateAttractorPath
(
DataIn
,
model
,
rTmp
);
rnew
(
n
)
=
reproduction_DS
(
DataIn
,
model
,
anew
(
n
),
anew
(
n
)
.
currTar
(:,
1
));
end
...
...
@@ -112,50 +112,50 @@ colPegs = [[.9,.5,.9];[.5,.9,.5]];
%DEMOS
subplot
(
1
,
3
,
1
);
hold
on
;
box
on
;
title
(
'Demonstrations'
);
for
n
=
1
:
nbSamples
%Plot frames
for
m
=
1
:
model
.
nbFrames
plot
([
s
(
n
)
.
p
(
m
)
.
b
(
2
)
s
(
n
)
.
p
(
m
)
.
b
(
2
)
+
s
(
n
)
.
p
(
m
)
.
A
(
2
,
3
)],
[
s
(
n
)
.
p
(
m
)
.
b
(
3
)
s
(
n
)
.
p
(
m
)
.
b
(
3
)
+
s
(
n
)
.
p
(
m
)
.
A
(
3
,
3
)],
'-'
,
'linewidth'
,
6
,
'color'
,
colPegs
(
m
,:));
plot
(
s
(
n
)
.
p
(
m
)
.
b
(
2
),
s
(
n
)
.
p
(
m
)
.
b
(
3
),
'.'
,
'markersize'
,
30
,
'color'
,
colPegs
(
m
,:)
-
[
.
05
,
.
05
,
.
05
]);
end
%Plot trajectories
plot
(
s
(
n
)
.
Data0
(
2
,
1
),
s
(
n
)
.
Data0
(
3
,
1
),
'.'
,
'markersize'
,
12
,
'color'
,
clrmap
(
n
,:));
plot
(
s
(
n
)
.
Data0
(
2
,:),
s
(
n
)
.
Data0
(
3
,:),
'-'
,
'linewidth'
,
1.5
,
'color'
,
clrmap
(
n
,:));
%Plot frames
for
m
=
1
:
model
.
nbFrames
plot
([
s
(
n
)
.
p
(
m
)
.
b
(
2
)
s
(
n
)
.
p
(
m
)
.
b
(
2
)
+
s
(
n
)
.
p
(
m
)
.
A
(
2
,
3
)],
[
s
(
n
)
.
p
(
m
)
.
b
(
3
)
s
(
n
)
.
p
(
m
)
.
b
(
3
)
+
s
(
n
)
.
p
(
m
)
.
A
(
3
,
3
)],
'-'
,
'linewidth'
,
6
,
'color'
,
colPegs
(
m
,:));
plot
(
s
(
n
)
.
p
(
m
)
.
b
(
2
),
s
(
n
)
.
p
(
m
)
.
b
(
3
),
'.'
,
'markersize'
,
30
,
'color'
,
colPegs
(
m
,:)
-
[
.
05
,
.
05
,
.
05
]);
end
%Plot trajectories
plot
(
s
(
n
)
.
Data0
(
2
,
1
),
s
(
n
)
.
Data0
(
3
,
1
),
'.'
,
'markersize'
,
12
,
'color'
,
clrmap
(
n
,:));
plot
(
s
(
n
)
.
Data0
(
2
,:),
s
(
n
)
.
Data0
(
3
,:),
'-'
,
'linewidth'
,
1.5
,
'color'
,
clrmap
(
n
,:));
end
axis
(
limAxes
);
axis
square
;
set
(
gca
,
'xtick'
,[],
'ytick'
,[]);
%REPROS
subplot
(
1
,
3
,
2
);
hold
on
;
box
on
;
title
(
'Reproductions with DS-GMR'
);
for
n
=
1
:
nbSamples
%Plot frames
for
m
=
1
:
model
.
nbFrames
plot
([
s
(
n
)
.
p
(
m
)
.
b
(
2
)
s
(
n
)
.
p
(
m
)
.
b
(
2
)
+
s
(
n
)
.
p
(
m
)
.
A
(
2
,
3
)],
[
s
(
n
)
.
p
(
m
)
.
b
(
3
)
s
(
n
)
.
p
(
m
)
.
b
(
3
)
+
s
(
n
)
.
p
(
m
)
.
A
(
3
,
3
)],
'-'
,
'linewidth'
,
6
,
'color'
,
colPegs
(
m
,:));
plot
(
s
(
n
)
.
p
(
m
)
.
b
(
2
),
s
(
n
)
.
p
(
m
)
.
b
(
3
),
'.'
,
'markersize'
,
30
,
'color'
,
colPegs
(
m
,:)
-
[
.
05
,
.
05
,
.
05
]);
end
%Plot Gaussians
plotGMM
(
r
(
n
)
.
Mu
(
2
:
3
,:,
1
),
r
(
n
)
.
Sigma
(
2
:
3
,
2
:
3
,:,
1
),
[
.
7
.
7
.
7
]);
%Plot frames
for
m
=
1
:
model
.
nbFrames
plot
([
s
(
n
)
.
p
(
m
)
.
b
(
2
)
s
(
n
)
.
p
(
m
)
.
b
(
2
)
+
s
(
n
)
.
p
(
m
)
.
A
(
2
,
3
)],
[
s
(
n
)
.
p
(
m
)
.
b
(
3
)
s
(
n
)
.
p
(
m
)
.
b
(
3
)
+
s
(
n
)
.
p
(
m
)
.
A
(
3
,
3
)],
'-'
,
'linewidth'
,
6
,
'color'
,
colPegs
(
m
,:));
plot
(
s
(
n
)
.
p
(
m
)
.
b
(
2
),
s
(
n
)
.
p
(
m
)
.
b
(
3
),
'.'
,
'markersize'
,
30
,
'color'
,
colPegs
(
m
,:)
-
[
.
05
,
.
05
,
.
05
]);
end
%Plot Gaussians
plotGMM
(
r
(
n
)
.
Mu
(
2
:
3
,:,
1
),
r
(
n
)
.
Sigma
(
2
:
3
,
2
:
3
,:,
1
),
[
.
7
.
7
.
7
]);
end
for
n
=
1
:
nbSamples
%Plot trajectories
plot
(
r
(
n
)
.
Data
(
2
,
1
),
r
(
n
)
.
Data
(
3
,
1
),
'.'
,
'markersize'
,
12
,
'color'
,
clrmap
(
n
,:));
plot
(
r
(
n
)
.
Data
(
2
,:),
r
(
n
)
.
Data
(
3
,:),
'-'
,
'linewidth'
,
1.5
,
'color'
,
clrmap
(
n
,:));
%Plot trajectories
plot
(
r
(
n
)
.
Data
(
2
,
1
),
r
(
n
)
.
Data
(
3
,
1
),
'.'
,
'markersize'
,
12
,
'color'
,
clrmap
(
n
,:));
plot
(
r
(
n
)
.
Data
(
2
,:),
r
(
n
)
.
Data
(
3
,:),
'-'
,
'linewidth'
,
1.5
,
'color'
,
clrmap
(
n
,:));
end
axis
(
limAxes
);
axis
square
;
set
(
gca
,
'xtick'
,[],
'ytick'
,[]);
%NEW REPROS
subplot
(
1
,
3
,
3
);
hold
on
;
box
on
;
title
(
'New reproductions with DS-GMR'
);
for
n
=
1
:
nbRepros
%Plot frames
for
m
=
1
:
model
.
nbFrames
plot
([
rnew
(
n
)
.
p
(
m
)
.
b
(
2
)
rnew
(
n
)
.
p
(
m
)
.
b
(
2
)
+
rnew
(
n
)
.
p
(
m
)
.
A
(
2
,
3
)],
[
rnew
(
n
)
.
p
(
m
)
.
b
(
3
)
rnew
(
n
)
.
p
(
m
)
.
b
(
3
)
+
rnew
(
n
)
.
p
(
m
)
.
A
(
3
,
3
)],
'-'
,
'linewidth'
,
6
,
'color'
,
colPegs
(
m
,:));
plot
(
rnew
(
n
)
.
p
(
m
)
.
b
(
2
),
rnew
(
n
)
.
p
(
m
)
.
b
(
3
),
'.'
,
'markersize'
,
30
,
'color'
,
colPegs
(
m
,:)
-
[
.
05
,
.
05
,
.
05
]);
end
%Plot Gaussians
plotGMM
(
rnew
(
n
)
.
Mu
(
2
:
3
,:,
1
),
rnew
(
n
)
.
Sigma
(
2
:
3
,
2
:
3
,:,
1
),
[
.
7
.
7
.
7
]);
%Plot frames
for
m
=
1
:
model
.
nbFrames
plot
([
rnew
(
n
)
.
p
(
m
)
.
b
(
2
)
rnew
(
n
)
.
p
(
m
)
.
b
(
2
)
+
rnew
(
n
)
.
p
(
m
)
.
A
(
2
,
3
)],
[
rnew
(
n
)
.
p
(
m
)
.
b
(
3
)
rnew
(
n
)
.
p
(
m
)
.
b
(
3
)
+
rnew
(
n
)
.
p
(
m
)
.
A
(
3
,
3
)],
'-'
,
'linewidth'
,
6
,
'color'
,
colPegs
(
m
,:));
plot
(
rnew
(
n
)
.
p
(
m
)
.
b
(
2
),
rnew
(
n
)
.
p
(
m
)
.
b
(
3
),
'.'
,
'markersize'
,
30
,
'color'
,
colPegs
(
m
,:)
-
[
.
05
,
.
05
,
.
05
]);
end
%Plot Gaussians
plotGMM
(
rnew
(
n
)
.
Mu
(
2
:
3
,:,
1
),
rnew
(
n
)
.
Sigma
(
2
:
3
,
2
:
3
,:,
1
),
[
.
7
.
7
.
7
]);
end
for
n
=
1
:
nbRepros
%Plot trajectories
plot
(
rnew
(
n
)
.
Data
(
2
,
1
),
rnew
(
n
)
.
Data
(
3
,
1
),
'.'
,
'markersize'
,
12
,
'color'
,[
.
2
.
2
.
2
]);
plot
(
rnew
(
n
)
.
Data
(
2
,:),
rnew
(
n
)
.
Data
(
3
,:),
'-'
,
'linewidth'
,
1.5
,
'color'
,[
.
2
.
2
.
2
]);
%Plot trajectories
plot
(
rnew
(
n
)
.
Data
(
2
,
1
),
rnew
(
n
)
.
Data
(
3
,
1
),
'.'
,
'markersize'
,
12
,
'color'
,[
.
2
.
2
.
2
]);
plot
(
rnew
(
n
)
.
Data
(
2
,:),
rnew
(
n
)
.
Data
(
3
,:),
'-'
,
'linewidth'
,
1.5
,
'color'
,[
.
2
.
2
.
2
]);
end
axis
(
limAxes
);
axis
square
;
set
(
gca
,
'xtick'
,[],
'ytick'
,[]);
...
...
@@ -166,13 +166,13 @@ figure;
%Plot norm of control commands
subplot
(
1
,
2
,
1
);
hold
on
;
for
n
=
1
:
nbRepros
plot
(
DataIn
,
rnew
(
n
)
.
ddxNorm
,
'k-'
,
'linewidth'
,
2
);
plot
(
DataIn
,
rnew
(
n
)
.
ddxNorm
,
'k-'
,
'linewidth'
,
2
);
end
xlabel
(
't'
);
ylabel
(
'|ddx|'
);
%Plot strength of the stiffness term
subplot
(
1
,
2
,
2
);
hold
on
;
for
n
=
1
:
nbRepros
plot
(
DataIn
,
rnew
(
n
)
.
kpDet
,
'k-'
,
'linewidth'
,
2
);
plot
(
DataIn
,
rnew
(
n
)
.
kpDet
,
'k-'
,
'linewidth'
,
2
);
end
xlabel
(
't'
);
ylabel
(
'|Kp|'
);
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment