Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
mednet
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
medai
software
mednet
Commits
be4a633c
Commit
be4a633c
authored
1 year ago
by
André Anjos
Committed by
Daniel CARRON
1 year ago
Browse files
Options
Downloads
Patches
Plain Diff
[engine.saliency.interpretability] Allow user to explicitly define target to be analysed
parent
a7d4c64f
No related branches found
No related tags found
1 merge request
!12
Adds grad-cam support on classifiers
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/ptbench/engine/saliency/interpretability.py
+66
-16
66 additions, 16 deletions
src/ptbench/engine/saliency/interpretability.py
with
66 additions
and
16 deletions
src/ptbench/engine/saliency/interpretability.py
+
66
−
16
View file @
be4a633c
...
...
@@ -23,14 +23,16 @@ logger = logging.getLogger(__name__)
def
_ordered_connected_components
(
saliency_map
:
typing
.
Sequence
[
typing
.
Sequence
[
float
]]
|
numpy
.
typing
.
NDArray
[
numpy
.
double
],
threshold
:
float
,
)
->
list
[
numpy
.
typing
.
NDArray
[
numpy
.
bool_
]]:
"""
Calculates the largest connected components available on a saliency map
and return those as individual masks.
This implementation is based on [SCORECAM-2020]_:
1. Thresholding: The pixel values above 20% of max value are kept in the
original saliency map. Everything else is set to zero.
1. Thresholding: The pixel values above ``threshold``% of max value are
kept in the original saliency map. Everything else is set to zero. The
value proposed on [SCORECAM-2020]_ is 0.2. Use this value if unsure.
2. The thresholded saliency map is transformed into a boolean array (ones
are attributed to all elements above the threshold.
3. We call :py:func:`skimage.metrics.label` to evaluate all connected
...
...
@@ -44,6 +46,10 @@ def _ordered_connected_components(
saliency_map
Input saliciency map whose connected components will be calculated
from.
threshold
Relative threshold to be used to zero parts of the original saliency
map. A value of 0.2 will zero all values in the saliency map that are
bellow 20% of the maximum value observed in the said map.
Returns
...
...
@@ -54,9 +60,10 @@ def _ordered_connected_components(
"""
# thresholds like [SCORECAM-2020]_
thresholded_mask
=
(
saliency_map
>=
(
0.2
*
numpy
.
max
(
saliency_map
))).
astype
(
numpy
.
uint8
)
saliency_array
=
numpy
.
array
(
saliency_map
)
thresholded_mask
=
(
saliency_array
>=
(
threshold
*
saliency_array
.
max
())
).
astype
(
numpy
.
uint8
)
# avoids an all zeroes mask being processed
if
not
numpy
.
any
(
thresholded_mask
):
...
...
@@ -131,6 +138,45 @@ def _compute_max_iou_and_ioda(
return
iou
,
ioda
def
get_largest_bounding_boxes
(
saliency_map
:
typing
.
Sequence
[
typing
.
Sequence
[
float
]]
|
numpy
.
typing
.
NDArray
[
numpy
.
double
],
n
:
int
,
threshold
:
float
=
0.2
,
)
->
list
[
BoundingBox
]:
"""
Returns the N largest connected components as bounding boxes in a
saliency map.
The return of values is subject to the value of ``threshold`` applied, as
well as on the saliency map itself. The number of objects found is also
affected by those parameters.
saliency_map
Input saliciency map whose connected components will be calculated
from.
n
The number of connected components to search for in the saliency map.
Connected components are then translated to bounding-box notation.
threshold
Relative threshold to be used to zero parts of the original saliency
map. A value of 0.2 will zero all values in the saliency map that are
bellow 20% of the maximum value observed in the said map.
Returns
-------
"""
retval
:
list
[
BoundingBox
]
=
[]
masks
=
_ordered_connected_components
(
saliency_map
,
threshold
)
if
masks
:
retval
+=
[
_extract_bounding_box
(
k
)
for
k
in
masks
[:
n
]]
return
retval
def
_compute_simultaneous_iou_and_ioda
(
detected_box
:
BoundingBox
,
gt_bboxes
:
BoundingBoxes
,
...
...
@@ -217,7 +263,7 @@ def _compute_proportional_energy(
if
denominator
==
0.0
:
return
0.0
return
float
(
numpy
.
sum
(
saliency_map
*
gt_mask
)
/
denominator
)
return
float
(
numpy
.
sum
(
saliency_map
*
gt_mask
)
/
denominator
)
# type: ignore
def
_process_sample
(
...
...
@@ -243,11 +289,10 @@ def _process_sample(
* Largest detected bounding box
"""
masks
=
_ordered_connected_components
(
saliency_map
)
detected_box
=
BoundingBox
(
-
1
,
0
,
0
,
0
,
0
)
if
masks
:
# we get only the largest bounding box as of now
detected_box
=
_extract_bounding_box
(
masks
[
0
])
largest_bbox
=
get_largest_bounding_boxes
(
saliency_map
,
n
=
1
,
threshold
=
0.2
)
detected_box
=
(
largest_bbox
[
0
]
if
largest_bbox
else
BoundingBox
(
-
1
,
0
,
0
,
0
,
0
)
)
# Calculate localization metrics
iou
,
ioda
=
_compute_max_iou_and_ioda
(
detected_box
,
gt_bboxes
)
...
...
@@ -271,6 +316,7 @@ def _process_sample(
def
run
(
input_folder
:
pathlib
.
Path
,
target_label
:
int
,
datamodule
:
lightning
.
pytorch
.
LightningDataModule
,
)
->
dict
[
str
,
list
[
typing
.
Any
]]:
"""
Applies visualization techniques on input CXR, outputs images with
...
...
@@ -281,6 +327,9 @@ def run(
input_folder
Directory in which the saliency maps are stored for a specific
visualization type.
target_label
The label to target for evaluating interpretability metrics. Samples
contining any other label are ignored.
datamodule
The lightning datamodule to iterate on.
...
...
@@ -318,6 +367,12 @@ def run(
name
=
str
(
sample
[
1
][
"
name
"
][
0
])
label
=
int
(
sample
[
1
][
"
label
"
].
item
())
if
label
!=
target_label
:
# we add the entry for dataset completeness, but do not treat
# it
retval
[
dataset_name
].
append
([
name
,
label
])
continue
# TODO: This is very specific to the TBX11k system for labelling
# regions of interest. We need to abstract from this to support more
# datasets and other ways to annotate.
...
...
@@ -325,11 +380,6 @@ def run(
"
bounding_boxes
"
,
BoundingBoxes
()
)
if
label
==
0
:
# we add the entry for dataset completeness
retval
[
dataset_name
].
append
([
name
,
label
])
continue
if
not
bboxes
:
logger
.
warning
(
f
"
Sample `
{
name
}
` does not contdain bounding-box information.
"
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment