Skip to content
Snippets Groups Projects
Commit 257f53a8 authored by Daniel CARRON's avatar Daniel CARRON :b:
Browse files

[doc] Doc fixes

parent 3240277a
No related branches found
No related tags found
1 merge request!15Update documentation
Pipeline #83643 passed
...@@ -48,7 +48,6 @@ class RawDataLoader(_BaseRawDataLoader): ...@@ -48,7 +48,6 @@ class RawDataLoader(_BaseRawDataLoader):
where to find the image to be loaded, and an integer, representing the where to find the image to be loaded, and an integer, representing the
sample label. sample label.
Returns Returns
------- -------
The sample representation. The sample representation.
......
...@@ -68,6 +68,7 @@ def _calculate_road_scores( ...@@ -68,6 +68,7 @@ def _calculate_road_scores(
Returns Returns
------- -------
tuple[float, float, float]
A 3-tuple containing floating point numbers representing the A 3-tuple containing floating point numbers representing the
most-relevant-first average score (``morf``), least-relevant-first most-relevant-first average score (``morf``), least-relevant-first
average score (``lerf``) and the combined value (``(lerf-morf)/2``). average score (``lerf``) and the combined value (``(lerf-morf)/2``).
...@@ -143,6 +144,15 @@ def _process_sample( ...@@ -143,6 +144,15 @@ def _process_sample(
A sequence of percentiles (percent x100) integer values indicating the A sequence of percentiles (percent x100) integer values indicating the
proportion of pixels to perturb in the original image to calculate both proportion of pixels to perturb in the original image to calculate both
MoRF and LeRF scores. MoRF and LeRF scores.
Returns
-------
list
A list containing the following items for a particular sample:
* The relative path to the sample.
* The label.
* An index to the specified target_class.
* The computed ROAD scores.
""" """
name: str = sample[1]["name"][0] name: str = sample[1]["name"][0]
......
...@@ -24,7 +24,19 @@ def _create_saliency_map_callable( ...@@ -24,7 +24,19 @@ def _create_saliency_map_callable(
target_layers: list[torch.nn.Module] | None, target_layers: list[torch.nn.Module] | None,
use_cuda: bool, use_cuda: bool,
): ):
"""Creates a class activation map (CAM) instance for a given model.""" """Creates a class activation map (CAM) instance for a given model.
Parameters
----------
algo_type
The algorithm to use for saliency map estimation.
model
Neural network model (e.g. pasa).
target_layers
The target layers to compute CAM for.
use_cuda
Whether to use cuda or not.
"""
import pytorch_grad_cam import pytorch_grad_cam
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment