Skip to content
Snippets Groups Projects
config.rst 9.37 KiB
Newer Older
.. Copyright © 2022 Idiap Research Institute <contact@idiap.ch>
..
.. SPDX-License-Identifier: GPL-3.0-or-later

=====================
Preset Configurations
=====================


.. _mednet.libs.classification.config:
------------------------------------
Classification Preset Configurations
------------------------------------

This module contains preset configurations for baseline CNN architectures and
DataModules in a classification task.
.. _mednet.libs.classification.config.models:
André Anjos's avatar
André Anjos committed

^^^^^^^^^^^^^^^^^^^^^

.. autosummary::
   :template: config.rst

   mednet.libs.classification.config.models.alexnet
   mednet.libs.classification.config.models.alexnet_pretrained
   mednet.libs.classification.config.models.densenet
   mednet.libs.classification.config.models.densenet_pretrained
   mednet.libs.classification.config.models.densenet_rs
   mednet.libs.classification.config.models.logistic_regression
   mednet.libs.classification.config.models.mlp
   mednet.libs.classification.config.models.pasa
.. _mednet.libs.classification.config.datamodules:
^^^^^^^^^^^^^^^^^^
Base DataModules and raw data loaders for the various databases currently
supported in this package, for your reference.  Each pre-configured DataModule
can receive the name of one or more splits as argument to build a fully
functional DataModule that can be used in training, prediction or testing.

.. autosummary::
   mednet.libs.classification.config.data.hivtb.datamodule
   mednet.libs.classification.config.data.indian.datamodule
   mednet.libs.classification.config.data.montgomery.datamodule
   mednet.libs.classification.config.data.montgomery_shenzhen.datamodule
   mednet.libs.classification.config.data.montgomery_shenzhen_indian.datamodule
   mednet.libs.classification.config.data.montgomery_shenzhen_indian_padchest.datamodule
   mednet.libs.classification.config.data.montgomery_shenzhen_indian_tbx11k.datamodule
   mednet.libs.classification.config.data.nih_cxr14.datamodule
   mednet.libs.classification.config.data.nih_cxr14_padchest.datamodule
   mednet.libs.classification.config.data.padchest.datamodule
   mednet.libs.classification.config.data.shenzhen.datamodule
   mednet.libs.classification.config.data.tbpoc.datamodule
   mednet.libs.classification.config.data.tbx11k.datamodule
.. _mednet.libs.classification.config.datamodule-instances:
^^^^^^^^^^^^^^^^^^^^^^^^^^
DataModules provide access to preset pytorch dataloaders for training,
validating, testing and running prediction tasks.  Each of the pre-configured
DataModule is based on one (or more) of the :ref:`supported base DataModules
<mednet.libs.classification.config.datamodules>`.
   mednet.libs.classification.config.data.indian.default
   mednet.libs.classification.config.data.montgomery.default
   mednet.libs.classification.config.data.montgomery_shenzhen.default
   mednet.libs.classification.config.data.montgomery_shenzhen_indian.default
   mednet.libs.classification.config.data.montgomery_shenzhen_indian_padchest.default
   mednet.libs.classification.config.data.montgomery_shenzhen_indian_tbx11k.v1_healthy_vs_atb
   mednet.libs.classification.config.data.montgomery_shenzhen_indian_tbx11k.v2_others_vs_atb
   mednet.libs.classification.config.data.nih_cxr14.default
   mednet.libs.classification.config.data.nih_cxr14_padchest.idiap
   mednet.libs.classification.config.data.padchest.idiap
   mednet.libs.classification.config.data.shenzhen.default
   mednet.libs.classification.config.data.tbx11k.v1_healthy_vs_atb
   mednet.libs.classification.config.data.tbx11k.v2_others_vs_atb
   mednet.libs.classification.config.data.tbx11k.v2_others_vs_atb
.. _mednet.libs.classification.config.datamodule-instances.folds:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

We support cross-validation with precise preset folds.  In this section, you
will find the configuration for the first fold (fold-0) for all supported
DataModules.  Nine other folds are available for every configuration (from 1 to
9), making up 10 folds per supported DataModule.


.. autosummary::
   :template: config.rst

   mednet.libs.classification.config.data.hivtb.fold_0
   mednet.libs.classification.config.data.indian.fold_0
   mednet.libs.classification.config.data.montgomery.fold_0
   mednet.libs.classification.config.data.montgomery_shenzhen.fold_0
   mednet.libs.classification.config.data.montgomery_shenzhen_indian.fold_0
   mednet.libs.classification.config.data.montgomery_shenzhen_indian_tbx11k.v1_fold_0
   mednet.libs.classification.config.data.montgomery_shenzhen_indian_tbx11k.v2_fold_0
   mednet.libs.classification.config.data.shenzhen.fold_0
   mednet.libs.classification.config.data.tbpoc.fold_0
   mednet.libs.classification.config.data.tbx11k.v1_fold_0
   mednet.libs.classification.config.data.tbx11k.v2_fold_0
.. _mednet.libs.segmentation.config:

------------------------------------
Classification Preset Configurations
------------------------------------

This module contains preset configurations for baseline CNN architectures and
DataModules in a segmentation task.


.. _mednet.libs.segmentation.config.models:

Pre-configured Models
^^^^^^^^^^^^^^^^^^^^^

Pre-configured models you can readily use.

.. autosummary::
   :toctree: api/config.models
   :template: config.rst

   mednet.libs.segmentation.config.models.driu_bn
   mednet.libs.segmentation.config.models.driu_od
   mednet.libs.segmentation.config.models.driu_pix
   mednet.libs.segmentation.config.models.driu
   mednet.libs.segmentation.config.models.hed
   mednet.libs.segmentation.config.models.lwnet
   mednet.libs.segmentation.config.models.m2unet
   mednet.libs.segmentation.config.models.unet


.. _mednet.libs.segmentation.config.datamodules:

DataModule support
^^^^^^^^^^^^^^^^^^

Base DataModules and raw data loaders for the various databases currently
supported in this package, for your reference.  Each pre-configured DataModule
can receive the name of one or more splits as argument to build a fully
functional DataModule that can be used in training, prediction or testing.

.. autosummary::
   :toctree: api/config.datamodules

   mednet.libs.segmentation.config.data.chasedb1.datamodule
   mednet.libs.segmentation.config.data.cxr8.datamodule
   mednet.libs.segmentation.config.data.drhagis.datamodule
   mednet.libs.segmentation.config.data.drionsdb.datamodule
   mednet.libs.segmentation.config.data.drishtigs1.datamodule
   mednet.libs.segmentation.config.data.drive.datamodule
   mednet.libs.segmentation.config.data.hrf.datamodule
   mednet.libs.segmentation.config.data.iostar.datamodule
   mednet.libs.segmentation.config.data.jsrt.datamodule
   mednet.libs.segmentation.config.data.montgomery.datamodule
   mednet.libs.segmentation.config.data.refuge.datamodule
   mednet.libs.segmentation.config.data.rimoner3.datamodule
   mednet.libs.segmentation.config.data.shenzhen.datamodule
   mednet.libs.segmentation.config.data.stare.datamodule


.. _mednet.libs.segmentation.config.datamodule-instances:

Pre-configured DataModules
^^^^^^^^^^^^^^^^^^^^^^^^^^

DataModules provide access to preset pytorch dataloaders for training,
validating, testing and running prediction tasks.  Each of the pre-configured
DataModule is based on one (or more) of the :ref:`supported base DataModules
<mednet.libs.segmentation.config.datamodules>`.

.. autosummary::
   :toctree: api/config.datamodule-instances
   :template: config.rst

   mednet.libs.segmentation.config.data.chasedb1.first_annotator
   mednet.libs.segmentation.config.data.chasedb1.second_annotator
   mednet.libs.segmentation.config.data.cxr8.default
   mednet.libs.segmentation.config.data.drhagis.default
   mednet.libs.segmentation.config.data.drionsdb.expert1
   mednet.libs.segmentation.config.data.drionsdb.expert2
   mednet.libs.segmentation.config.data.drishtigs1.optic_cup_all
   mednet.libs.segmentation.config.data.drishtigs1.optic_cup_any
   mednet.libs.segmentation.config.data.drishtigs1.optic_disc_all
   mednet.libs.segmentation.config.data.drishtigs1.optic_disc_any
   mednet.libs.segmentation.config.data.drive.default
   mednet.libs.segmentation.config.data.drive.drive_2nd
   mednet.libs.segmentation.config.data.hrf.default
   mednet.libs.segmentation.config.data.iostar.optic_disc
   mednet.libs.segmentation.config.data.iostar.vessel
   mednet.libs.segmentation.config.data.jsrt.default
   mednet.libs.segmentation.config.data.montgomery.default
   mednet.libs.segmentation.config.data.refuge.disc
   mednet.libs.segmentation.config.data.refuge.cup
   mednet.libs.segmentation.config.data.rimoner3.cup_exp1
   mednet.libs.segmentation.config.data.rimoner3.cup_exp2
   mednet.libs.segmentation.config.data.rimoner3.disc_exp1
   mednet.libs.segmentation.config.data.rimoner3.disc_exp2
   mednet.libs.segmentation.config.data.shenzhen.default
   mednet.libs.segmentation.config.data.stare.ah
   mednet.libs.segmentation.config.data.stare.vk


------------------
Data Augmentations
------------------

Sequences of data augmentations you can readily use.

.. _mednet.libs.common.config.augmentations:

.. autosummary::
   :toctree: api/config.augmentations
   :template: config.rst

   mednet.libs.common.config.augmentations.elastic
   mednet.libs.common.config.augmentations.affine


.. include:: links.rst