Newer
Older
.. SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
..
.. SPDX-License-Identifier: GPL-3.0-or-later
=============================================================
Computer-Aided Detection and Segmentation from Medical Data
=============================================================
Benchmark and analysis of deep neural network architectures applied to
classification and segmentation from medical images (2D and 3D). This package
can be readily used on a number of public datasets. It can be extended to add
more datasets, and models.
Use one or more the BibTeX references below to cite this work:
.. code:: bibtex
@INPROCEEDINGS{raposo_union_2022,
author = {Raposo, Geoffrey and Trajman, Anete and Anjos, Andr{\'{e}}},
month = 11,
title = {Pulmonary Tuberculosis Screening from Radiological Signs on Chest X-Ray Images Using Deep Models},
booktitle = {Union World Conference on Lung Health},
year = {2022},
date = {2022-11-01},
organization = {The Union},
}
@TECHREPORT{Raposo_Idiap-Com-01-2021,
author = {Raposo, Geoffrey},
keywords = {deep learning, generalization, Interpretability, transfer learning, Tuberculosis Detection},
projects = {Idiap},
month = {7},
title = {Active tuberculosis detection from frontal chest X-ray images},
type = {Idiap-Com},
number = {Idiap-Com-01-2021},
year = {2021},
institution = {Idiap},
url = {https://gitlab.idiap.ch/biosignal/software/mednet},
pdf = {https://publidiap.idiap.ch/downloads/reports/2021/Raposo_Idiap-Com-01-2021.pdf}
}
@INPROCEEDINGS{renzo_2021,
title = {Development of a lung segmentation algorithm for analog imaged chest X-Ray: preliminary results},
author = {Matheus A. Renzo and Nat\'{a}lia Fernandez and Andr\'e Baceti and Natanael Nunes de Moura Junior and Andr\'e Anjos},
month = {10},
booktitle = {XV Brazilian Congress on Computational Intelligence},
year = {2021},
url = {https://publications.idiap.ch/index.php/publications/show/4649},
}
@MISC{laibacher_2019,
title = {On the Evaluation and Real-World Usage Scenarios of Deep Vessel Segmentation for Retinography},
author = {Tim Laibacher and Andr\'e Anjos},
year = {2019},
eprint = {1909.03856},
archivePrefix = {arXiv},
primaryClass = {cs.CV},
url = {https://arxiv.org/abs/1909.03856},
}

André Anjos
committed
models