Newer
Older
.. SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
..
.. SPDX-License-Identifier: GPL-3.0-or-later
We support two installation modes, through pip_, or mamba_ (conda).
.. tab:: pip
Stable, from PyPI:
.. code:: sh
Latest beta, from GitLab package registry:
.. code:: sh
pip install --pre --index-url https://gitlab.idiap.ch/api/v4/groups/software/-/packages/pypi/simple --extra-index-url https://pypi.org/simple mednet
.. tip::
To avoid long command-lines you may configure pip to define the indexes and
package search priorities as you like.
mamba install -c https://www.idiap.ch/software/biosignal/conda -c conda-forge mednet
mamba install -c https://www.idiap.ch/software/biosignal/conda/label/beta -c conda-forge mednet

André Anjos
committed
.. tip::
To force-install Nvidia GPU support on Linux machines, execute:
.. code:: sh
$ mamba install pytorch-gpu
# or, to force the Nvidia CUDA version (environments w/o Nvidia setup):
$ CONDA_OVERRIDE_CUDA=11.2 mamba install 'pytorch-gpu=*=cuda112*'
Setup
-----
A configuration file may be useful to setup global options that should be often
reused. The location of the configuration file depends on the value of the
environment variable ``$XDG_CONFIG_HOME``, but defaults to
``~/.config/mednet.toml``. You may edit this file using your preferred
editor.
Here is an example configuration file that may be useful as a starting point:
.. code:: toml
[datadir]
indian = "/Users/myself/dbs/tbxpredict"
montgomery = "/Users/myself/dbs/montgomery-xrayset"
shenzhen = "/Users/myself/dbs/shenzhen"
nih_cxr14_re = "/Users/myself/dbs/nih-cxr14-re"
tbx11k_simplified = "/Users/myself/dbs/tbx11k-simplified"
[nih_cxr14_re]
idiap_folder_structure = false # set to `true` if at Idiap
To get a list of valid data directories that can be configured, execute:
.. code:: sh
You must procure and download datasets by yourself. The raw data is not
included in this package as we are not authorised to redistribute it.
To check whether the downloaded version is consistent with the structure
that is expected by this package, run:
.. code:: sh
mednet dataset check montgomery
.. _mednet.setup.databases:

André Anjos
committed
Supported Databases
===================
Here is a list of currently supported datasets in this package, alongside
notable properties. Each dataset name is linked to the location where
raw data can be downloaded. The list of images in each split is available
in the source code.
.. _mednet.setup.databases.tb:

André Anjos
committed
Tuberculosis databases
~~~~~~~~~~~~~~~~~~~~~~
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
The following datasets contain only the tuberculosis final diagnosis (0 or 1).
In addition to the splits presented in the following table, 10 folds
(for cross-validation) randomly generated are available for these datasets.
.. list-table::
* - Dataset
- Reference
- H x W
- Samples
- Training
- Validation
- Test
* - Montgomery_
- [MONTGOMERY-SHENZHEN-2014]_
- 4020 x 4892
- 138
- 88
- 22
- 28
* - Shenzhen_
- [MONTGOMERY-SHENZHEN-2014]_
- Varying
- 662
- 422
- 107
- 133
* - Indian_
- [INDIAN-2013]_
- Varying
- 155
- 83
- 20
- 52
.. _mednet.setup.datasets.tb+signs:

André Anjos
committed
Tuberculosis multilabel databases
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following dataset contains the labels healthy, sick & non-TB, active TB,
and latent TB. The implemented tbx11k dataset in this package is based on
the simplified version, which is just a more compact version of the original.
In addition to the splits presented in the following table, 10 folds
(for cross-validation) randomly generated are available for these datasets.
.. list-table::
* - Dataset
- Reference
- H x W
- Samples
- Training
- Validation
- Test
* - TBX11K_
- [TBX11K-2020]_
- 512 x 512
- 11'200
- 6600
- 1800
- 2800
- [TBX11K-SIMPLIFIED-2020]_
- 512 x 512
- 11'200
- 6600
- 1800
- 2800
.. _mednet.setup.datasets.tbmultilabel+signs:
Tuberculosis + radiological findings dataset
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following dataset contains both the tuberculosis final diagnosis (0 or 1)
and radiological findings.
.. list-table::
* - Dataset
- Reference
- H x W
- Samples
- Train
- Test
* - PadChest_
- [PADCHEST-2019]_
- Varying
- 160'861
- 160'861
- 0
.. _mednet.setup.datasets.signs:
Radiological findings datasets
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following dataset contains only the radiological findings without any
information about tuberculosis.
NIH CXR14 labels for training and validation sets are the relabeled
versions done by the author of the CheXNeXt study [CHEXNEXT-2018]_.
* - Dataset
- Reference
- H x W
- Samples
- Training
- Validation
- Test
* - NIH_CXR14_re_
- [NIH-CXR14-2017]_
- 1024 x 1024
- 109'041
- 98'637
- 6'350
- 4'054
.. _mednet.setup.datasets.hiv-tb:
HIV-Tuberculosis datasets
~~~~~~~~~~~~~~~~~~~~~~~~~
The following datasets contain only the tuberculosis final diagnosis (0 or 1)
and come from HIV infected patients. 10 folds (for cross-validation) randomly
generated are available for these datasets.
Please contact the authors of these datasets to have access to the data.
.. list-table::
* - Dataset
- Reference
- H x W
- Samples
* - TB POC
- [TB-POC-2018]_
- 2048 x 2500
- 407
* - HIV TB
- [HIV-TB-2019]_
- 2048 x 2500
- 243