Newer
Older
# SPDX-FileCopyrightText: Copyright © 2023 Idiap Research Institute <contact@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-or-later
"""Tests for transforms."""
import numpy
import PIL.Image
import torchvision.transforms.functional as F # noqa: N812
from mednet.libs.common.data.augmentations import ElasticDeformation
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from mednet.libs.common.models.transforms import (
crop_image_to_mask,
resize_max_side,
)
def test_crop_mask():
original_tensor_size = (3, 50, 100)
original_mask_size = (1, 50, 100)
slice_ = (slice(None), slice(10, 30), slice(50, 70))
tensor = torch.rand(original_tensor_size)
mask = torch.zeros(original_mask_size)
mask[slice_] = 1
cropped_tensor = crop_image_to_mask(tensor, mask)
assert cropped_tensor.shape == (3, 20, 20)
assert torch.all(cropped_tensor.eq(tensor[slice_]))
def test_resize_max_size():
original_size = (3, 50, 100)
original_ratio = original_size[1] / original_size[2]
new_max_side = 120
tensor = torch.rand(original_size)
resized_tensor = resize_max_side(tensor, new_max_side)
resized_ratio = resized_tensor.shape[1] / resized_tensor.shape[2]
assert original_ratio == resized_ratio
transposed_tensor = tensor.transpose(1, 2)
resized_transposed_tensor = resize_max_side(transposed_tensor, new_max_side)
inv_ratio = 1 / (
resized_transposed_tensor.shape[1] / resized_transposed_tensor.shape[2]
)
assert original_ratio == inv_ratio
assert resized_tensor.shape[1] == resized_transposed_tensor.shape[2]
assert resized_tensor.shape[2] == resized_transposed_tensor.shape[1]
def test_elastic_deformation(datadir):
# Get a raw sample without deformation
data_file = str(datadir / "raw_without_elastic_deformation.png")
raw_without_deformation = F.to_tensor(PIL.Image.open(data_file))
numpy.random.seed(seed=100)
ed = ElasticDeformation()
raw_deformed = ed(raw_without_deformation)
# Get the same sample already deformed (with seed=100)
data_file_2 = str(datadir / "raw_with_elastic_deformation.png")
raw_2 = PIL.Image.open(data_file_2)
# Compare both
raw_deformed = (255 * numpy.asarray(raw_deformed)).astype(numpy.uint8)[

André Anjos
committed
0,
:,
:,
]
raw_2 = numpy.asarray(raw_2)
numpy.testing.assert_array_equal(raw_deformed, raw_2)