Skip to content
Snippets Groups Projects

If there's no samples, returns an empty liss

Closed Tiago de Freitas Pereira requested to merge update2 into master

Merge request reports

Loading
Loading

Activity

Filter activity
  • Approvals
  • Assignees & reviewers
  • Comments (from bots)
  • Comments (from users)
  • Commits & branches
  • Edits
  • Labels
  • Lock status
  • Mentions
  • Merge request status
  • Tracking
  • These classes are supposed to follow scikit-learn's API, aren't they?

    pca.transform([])
    ---------------------------------------------------------------------------
    ValueError                                Traceback (most recent call last)
    <ipython-input-13-30a799240129> in <module>
    ----> 1 pca.transform([])
    
    ~/miniconda/envs/bob36/lib/python3.6/site-packages/sklearn/decomposition/_base.py in transform(self, X)
        125         check_is_fitted(self)
        126 
    --> 127         X = check_array(X)
        128         if self.mean_ is not None:
        129             X = X - self.mean_
    
    ~/miniconda/envs/bob36/lib/python3.6/site-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
        554                     "Reshape your data either using array.reshape(-1, 1) if "
        555                     "your data has a single feature or array.reshape(1, -1) "
    --> 556                     "if it contains a single sample.".format(array))
        557 
        558         # in the future np.flexible dtypes will be handled like object dtypes
    
    ValueError: Expected 2D array, got 1D array instead:
    array=[].
    Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.
    
    pca.transform([[]])
    ---------------------------------------------------------------------------
    ValueError                                Traceback (most recent call last)
    <ipython-input-14-6a037ad0a10e> in <module>
    ----> 1 pca.transform([[]])
    
    ~/miniconda/envs/bob36/lib/python3.6/site-packages/sklearn/decomposition/_base.py in transform(self, X)
        125         check_is_fitted(self)
        126 
    --> 127         X = check_array(X)
        128         if self.mean_ is not None:
        129             X = X - self.mean_
    
    ~/miniconda/envs/bob36/lib/python3.6/site-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
        592                              " a minimum of %d is required%s."
        593                              % (n_features, array.shape, ensure_min_features,
    --> 594                                 context))
        595 
        596     if warn_on_dtype and dtype_orig is not None and array.dtype != dtype_orig:
    
    ValueError: Found array with 0 feature(s) (shape=(1, 0)) while a minimum of 1 is required.
  • Yeap. I'll push a better solution to that in a few minutes.

Please register or sign in to reply
Loading