Skip to content
Snippets Groups Projects

Making Linearized a transformer without FIT

Closed Tiago de Freitas Pereira requested to merge linearize-fit into master
2 files
+ 5
10
Compare changes
  • Side-by-side
  • Inline
Files
2
@@ -4,21 +4,17 @@
from bob.pipelines.mixins import CheckpointMixin, SampleMixin
from sklearn.preprocessing import FunctionTransformer
from sklearn.base import TransformerMixin
import numpy as np
def linearize(X):
X = np.asarray(X)
return np.reshape(X, (X.shape[0], -1))
class Linearize(FunctionTransformer):
class Linearize(TransformerMixin):
"""Extracts features by simply concatenating all elements of the data into one long vector.
"""
def __init__(self, **kwargs):
super().__init__(func=linearize, **kwargs)
def transform(self, X):
X = np.asarray(X)
return np.reshape(X, (X.shape[0], -1))
class SampleLinearize(SampleMixin, Linearize):
Loading