Skip to content
Snippets Groups Projects
Commit f7bf890b authored by Tiago de Freitas Pereira's avatar Tiago de Freitas Pereira
Browse files

Making Linearized a transformer without FIT

parent db39f302
No related branches found
No related tags found
1 merge request!10Making Linearized a transformer without FIT
Pipeline #38365 failed
...@@ -222,7 +222,6 @@ class SampleMixin: ...@@ -222,7 +222,6 @@ class SampleMixin:
raise ValueError("Type for sample not supported %s" % type(samples)) raise ValueError("Type for sample not supported %s" % type(samples))
def fit(self, samples, y=None): def fit(self, samples, y=None):
# if the super method is not fittable, # if the super method is not fittable,
# there's no reason to stack those samples # there's no reason to stack those samples
if hasattr(super(), "fit"): if hasattr(super(), "fit"):
......
...@@ -4,21 +4,17 @@ ...@@ -4,21 +4,17 @@
from bob.pipelines.mixins import CheckpointMixin, SampleMixin from bob.pipelines.mixins import CheckpointMixin, SampleMixin
from sklearn.preprocessing import FunctionTransformer from sklearn.base import TransformerMixin
import numpy as np import numpy as np
def linearize(X): class Linearize(TransformerMixin):
X = np.asarray(X)
return np.reshape(X, (X.shape[0], -1))
class Linearize(FunctionTransformer):
"""Extracts features by simply concatenating all elements of the data into one long vector. """Extracts features by simply concatenating all elements of the data into one long vector.
""" """
def __init__(self, **kwargs): def transform(self, X):
super().__init__(func=linearize, **kwargs) X = np.asarray(X)
return np.reshape(X, (X.shape[0], -1))
class SampleLinearize(SampleMixin, Linearize): class SampleLinearize(SampleMixin, Linearize):
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment