Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
bob
bob.pipelines
Commits
3975182c
Commit
3975182c
authored
Nov 06, 2020
by
Tiago de Freitas Pereira
Browse files
Merge branch 'add-annotations-to-wrappers' into 'master'
Allow setting specific attributes of sample See merge request
!43
parents
57bd3218
90f0443d
Pipeline
#45000
failed with stages
in 3 minutes and 32 seconds
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
bob/pipelines/wrappers.py
View file @
3975182c
...
...
@@ -101,6 +101,12 @@ class SampleWrapper(BaseWrapper, TransformerMixin):
"subject")]`` as the value for this attribute.
transform_extra_arguments : [tuple]
Similar to ``fit_extra_arguments`` but for the transform and other similar methods.
output_attribute: str
The name of a Sample attribute where the output of the estimator will be
saved to. [Default is ``data``]
Example:
if ``output_attribute`` is ``"annotations"``, then
``sample.annotations`` will contain the output of the estimator.
"""
def
__init__
(
...
...
@@ -108,12 +114,14 @@ class SampleWrapper(BaseWrapper, TransformerMixin):
estimator
,
transform_extra_arguments
=
None
,
fit_extra_arguments
=
None
,
output_attribute
=
"data"
,
**
kwargs
,
):
super
().
__init__
(
**
kwargs
)
self
.
estimator
=
estimator
self
.
transform_extra_arguments
=
transform_extra_arguments
or
tuple
()
self
.
fit_extra_arguments
=
fit_extra_arguments
or
tuple
()
self
.
output_attribute
=
output_attribute
def
_samples_transform
(
self
,
samples
,
method_name
):
# Transform either samples or samplesets
...
...
@@ -131,10 +139,16 @@ class SampleWrapper(BaseWrapper, TransformerMixin):
else
:
kwargs
=
_make_kwargs_from_samples
(
samples
,
self
.
transform_extra_arguments
)
delayed
=
DelayedSamplesCall
(
partial
(
method
,
**
kwargs
),
func_name
,
samples
,)
new_samples
=
[
DelayedSample
(
partial
(
delayed
,
index
=
i
),
parent
=
s
)
for
i
,
s
in
enumerate
(
samples
)
]
if
self
.
output_attribute
!=
"data"
:
# Edit the sample.<output_attribute> instead of data
for
i
,
s
in
enumerate
(
samples
):
setattr
(
s
,
self
.
output_attribute
,
delayed
(
i
))
new_samples
=
samples
else
:
new_samples
=
[
DelayedSample
(
partial
(
delayed
,
index
=
i
),
parent
=
s
)
for
i
,
s
in
enumerate
(
samples
)
]
return
new_samples
def
transform
(
self
,
samples
):
...
...
@@ -176,7 +190,15 @@ class SampleWrapper(BaseWrapper, TransformerMixin):
class
CheckpointWrapper
(
BaseWrapper
,
TransformerMixin
):
"""Wraps :any:`Sample`-based estimators so the results are saved in
disk."""
disk.
Parameters
----------
sample_attribute: str
The attribute of the Sample object that needs to be saved to disk.
[Default is ``data``].
"""
def
__init__
(
self
,
...
...
@@ -186,6 +208,7 @@ class CheckpointWrapper(BaseWrapper, TransformerMixin):
extension
=
".h5"
,
save_func
=
None
,
load_func
=
None
,
sample_attribute
=
"data"
,
**
kwargs
,
):
super
().
__init__
(
**
kwargs
)
...
...
@@ -195,6 +218,7 @@ class CheckpointWrapper(BaseWrapper, TransformerMixin):
self
.
extension
=
extension
self
.
save_func
=
save_func
or
bob
.
io
.
base
.
save
self
.
load_func
=
load_func
or
bob
.
io
.
base
.
load
self
.
sample_attribute
=
sample_attribute
if
model_path
is
None
and
features_dir
is
None
:
logger
.
warning
(
"Both model_path and features_dir are None. "
...
...
@@ -290,14 +314,21 @@ class CheckpointWrapper(BaseWrapper, TransformerMixin):
def
save
(
self
,
sample
):
path
=
self
.
make_path
(
sample
)
os
.
makedirs
(
os
.
path
.
dirname
(
path
),
exist_ok
=
True
)
return
self
.
save_func
(
sample
.
data
,
path
)
# Gets sample.data or sample.<sample_attribute> if specified
to_save
=
getattr
(
sample
,
self
.
sample_attribute
)
return
self
.
save_func
(
to_save
,
path
)
def
load
(
self
,
sample
,
path
):
# because we are checkpointing, we return a DelayedSample
# instead of a normal (preloaded) sample. This allows the next
# phase to avoid loading it would it be unnecessary (e.g. next
# phase is already check-pointed)
return
DelayedSample
(
partial
(
self
.
load_func
,
path
),
parent
=
sample
)
if
self
.
sample_attribute
==
"data"
:
return
DelayedSample
(
partial
(
self
.
load_func
,
path
),
parent
=
sample
)
else
:
loaded
=
self
.
load_func
(
path
)
setattr
(
sample
,
self
.
sample_attribute
,
loaded
)
return
sample
def
load_model
(
self
):
if
is_estimator_stateless
(
self
.
estimator
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment