Skip to content
Snippets Groups Projects

Alignment for LightCNN

Merged Anjith GEORGE requested to merge light_cnn_facecrop into master
1 file
+ 129
11
Compare changes
  • Side-by-side
  • Inline
@@ -19,6 +19,9 @@ import bob.ip.base
import importlib
import bob.bio.face
# ==============================================================================
def auto_norm_image(data, annotations, n_sigma=3.0, norm_method='MAD'):
@@ -76,6 +79,31 @@ def auto_norm_image(data, annotations, n_sigma=3.0, norm_method='MAD'):
return data_n
def get_mouth_center(lm):
"""
This function returns the location of mouth center
**Parameters:**
``lm`` : :py:class:`numpy.ndarray`
A numpy array containing the coordinates of facial landmarks, (68X2)
**Returns:**
``mouth_center``
A tuple containing the location of mouth center
"""
# Mean position of eye corners as eye centers , casted to int()
mouth_center_t = (lm[48, :] + lm[54, :]) / 2.0
mouth_center = (int(mouth_center_t[1]), int(mouth_center_t[0]))
return mouth_center
# ==============================================================================
def get_eye_pos(lm):
@@ -108,6 +136,32 @@ def get_eye_pos(lm):
return right_eye, left_eye
def get_eye_center(lm):
"""
This function returns the location of eye_center, midpoint of left and right eye
**Parameters:**
``lm`` : :py:class:`numpy.ndarray`
A numpy array containing the coordinates of facial landmarks, (68X2)
**Returns:**
``eye_center``
A tuple containing the location of eye_center
"""
# Mean position of eye corners as eye centers , casted to int()
left_eye_t = (lm[36, :] + lm[39, :]) / 2.0
right_eye_t = (lm[42, :] + lm[45, :]) / 2.0
eye_center = (int((left_eye_t[1]+right_eye_t[1])/2.0), int((left_eye_t[0]+right_eye_t[0])/2.0))
return eye_center
# ==============================================================================
def detect_face_landmarks_in_image(image, method="dlib"):
"""
@@ -213,7 +267,7 @@ def detect_face_landmarks_in_image(image, method="dlib"):
# ==========================================================================
def normalize_image_size_in_grayscale(image, annotations,
face_size, use_face_alignment):
face_size, use_face_alignment,alignment_type='default'):
"""
This function crops the face in the input Gray-scale image given annotations
defining the face bounding box, and eye positions.
@@ -250,16 +304,56 @@ def normalize_image_size_in_grayscale(image, annotations,
if use_face_alignment:
face_eyes_norm = bob.ip.base.FaceEyesNorm(
eyes_distance=((face_size + 1) / 2.),
crop_size=(face_size, face_size),
eyes_center=(face_size / 4., (face_size - 0.5) / 2.))
right_eye, left_eye = annotations['reye'], annotations['leye']
if alignment_type=='default':
face_eyes_norm = bob.ip.base.FaceEyesNorm(
eyes_distance=((face_size + 1) / 2.),
crop_size=(face_size, face_size),
eyes_center=(face_size / 4., (face_size - 0.5) / 2.))
right_eye, left_eye = annotations['reye'], annotations['leye']
normalized_image = face_eyes_norm( image, right_eye = right_eye, left_eye = left_eye )
normbbx=normalized_image.astype('uint8')
elif alignment_type=='lightcnn': # This option overrides the facesize argument
# This is the size of the image that this model expects
CROPPED_IMAGE_HEIGHT = 128
CROPPED_IMAGE_WIDTH = 128
# eye positions for frontal images
RIGHT_EYE_POS = (32, 44)
LEFT_EYE_POS = (32, 84)
EYE_CENTER_POS = (40, 64)
MOUTH_CENTER_POS = (88, 64)
normalized_image = face_eyes_norm( image, right_eye = right_eye, left_eye = left_eye )
lm=np.array(annotations['landmarks'])
normbbx=normalized_image.astype('uint8')
mouth_center=get_mouth_center(lm)
eye_center=get_eye_center(lm)
annotations['eye_center'] =eye_center
annotations['mouth_center']=mouth_center
light_cnn_face_cropper=bob.bio.face.preprocessor.FaceCrop(
cropped_image_size=(CROPPED_IMAGE_HEIGHT, CROPPED_IMAGE_WIDTH),
cropped_positions={'eye_center': EYE_CENTER_POS, 'mouth_center': MOUTH_CENTER_POS})
normalized_image = light_cnn_face_cropper( image, annotations=annotations)
normbbx=normalized_image.astype('uint8')
else:
print('The specified alignment method {} is not implemented!'.format(alignment_type))
else:
@@ -278,7 +372,7 @@ def normalize_image_size_in_grayscale(image, annotations,
# ==========================================================================
def normalize_image_size(image, annotations, face_size,
rgb_output_flag, use_face_alignment):
rgb_output_flag, use_face_alignment,alignment_type='default'):
"""
This function crops the face in the input image given annotations defining
the face bounding box. The size of the face is also normalized to the
@@ -334,7 +428,7 @@ def normalize_image_size(image, annotations, face_size,
for image_channel in image: # for all color channels in the input image
cropped_face = normalize_image_size_in_grayscale(
image_channel, annotations, face_size, use_face_alignment)
image_channel, annotations, face_size, use_face_alignment,alignment_type=alignment_type)
result.append(cropped_face)
@@ -388,6 +482,15 @@ class FaceCropAlign(Preprocessor):
using the facial landmarks detected locally.
Works only when ``face_detection_method is not None``.
``alignment_type`` : :py:class:`str`
Specifies the alignment type to use if ``use_face_alignment`` is set to ``True``
Two methods are currently implemented:
``default`` which would do alignment by making eyes
horizontally
``lightcnn`` which aligns the face such that eye center are mouth centers are aligned to
predefined positions. This option overrides the face size option as the output required
is always 128x128. This is suitable for use with LightCNN model.
``max_image_size`` : :py:class:`int`
The maximum size of the image to be processed.
``max_image_size`` is only supported when
@@ -420,6 +523,7 @@ class FaceCropAlign(Preprocessor):
def __init__(self, face_size,
rgb_output_flag,
use_face_alignment,
alignment_type='default',
max_image_size=None,
face_detection_method=None,
min_face_size=None,
@@ -429,6 +533,7 @@ class FaceCropAlign(Preprocessor):
Preprocessor.__init__(self, face_size=face_size,
rgb_output_flag=rgb_output_flag,
use_face_alignment=use_face_alignment,
alignment_type=alignment_type,
max_image_size=max_image_size,
face_detection_method=face_detection_method,
min_face_size=min_face_size,
@@ -438,6 +543,7 @@ class FaceCropAlign(Preprocessor):
self.face_size = face_size
self.rgb_output_flag = rgb_output_flag
self.use_face_alignment = use_face_alignment
self.alignment_type=alignment_type
self.max_image_size = max_image_size
self.face_detection_method = face_detection_method
@@ -447,6 +553,17 @@ class FaceCropAlign(Preprocessor):
self.supported_face_detection_method = ["dlib", "mtcnn"]
self.supported_alignment_method = ["default", "lightcnn"]
if use_face_alignment:
if self.alignment_type not in self.supported_alignment_method:
raise ValueError('The alignment type {} is not supported'.format(self.alignment_type))
if self.face_detection_method is not None:
if self.face_detection_method not in self.supported_face_detection_method:
@@ -546,6 +663,7 @@ class FaceCropAlign(Preprocessor):
annotations=annotations,
face_size=self.face_size,
rgb_output_flag=self.rgb_output_flag,
use_face_alignment=self.use_face_alignment)
use_face_alignment=self.use_face_alignment,
alignment_type=self.alignment_type)
return norm_face_image
Loading