Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bob.pad.face
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
bob
bob.pad.face
Merge requests
!107
WIP: Port to dask pipelines
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
WIP: Port to dask pipelines
dask-pipelines
into
master
Overview
0
Commits
2
Pipelines
4
Changes
9
Merged
Amir MOHAMMADI
requested to merge
dask-pipelines
into
master
4 years ago
Overview
0
Commits
2
Pipelines
4
Changes
9
Expand
0
0
Merge request reports
Compare
master
version 3
5de1a98d
4 years ago
version 2
d5cba489
4 years ago
version 1
1203a30f
4 years ago
master (base)
and
latest version
latest version
80e1c3dc
2 commits,
4 years ago
version 3
5de1a98d
1 commit,
4 years ago
version 2
d5cba489
2 commits,
4 years ago
version 1
1203a30f
1 commit,
4 years ago
9 files
+
302
−
252
Side-by-side
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
Files
9
Search (e.g. *.vue) (Ctrl+P)
bob/pad/face/config/vanilla_pad/qm_svm.py
0 → 100644
+
69
−
0
Options
# Legacy imports
from
bob.bio.face.helpers
import
face_crop_solver
from
bob.bio.video
import
VideoLikeContainer
from
bob.bio.video.transformer
import
Wrapper
as
TransformerWrapper
from
bob.pad.face.extractor
import
ImageQualityMeasure
# new imports
from
sklearn.svm
import
SVC
from
sklearn.model_selection
import
GridSearchCV
from
sklearn.pipeline
import
make_pipeline
from
bob.pad.base.pipelines.vanilla_pad
import
FrameContainersToFrames
import
bob.pipelines
as
mario
database
=
globals
().
get
(
"
database
"
)
if
database
is
not
None
:
annotation_type
=
database
.
annotation_type
fixed_positions
=
database
.
fixed_positions
else
:
annotation_type
=
None
fixed_positions
=
None
# Preprocessor #
cropper
=
face_crop_solver
(
cropped_image_size
=
64
,
cropped_positions
=
annotation_type
)
preprocessor
=
TransformerWrapper
(
cropper
)
preprocessor
=
mario
.
wrap
(
[
"
sample
"
,
"
checkpoint
"
],
preprocessor
,
transform_extra_arguments
=
((
"
annotations
"
,
"
annotations
"
),),
features_dir
=
"
temp/faces-64
"
,
save_func
=
VideoLikeContainer
.
save
,
load_func
=
VideoLikeContainer
.
load
,
)
# Legacy extractor #
extractor
=
TransformerWrapper
(
ImageQualityMeasure
(
galbally
=
True
,
msu
=
True
,
dtype
=
None
))
extractor
=
mario
.
wrap
(
[
"
sample
"
,
"
checkpoint
"
],
extractor
,
features_dir
=
"
temp/iqm-features
"
,
save_func
=
VideoLikeContainer
.
save
,
load_func
=
VideoLikeContainer
.
load
,
)
# new stuff #
frame_cont_to_array
=
FrameContainersToFrames
()
param_grid
=
[
{
"
C
"
:
[
1
,
10
,
100
,
1000
],
"
kernel
"
:
[
"
linear
"
]},
{
"
C
"
:
[
1
,
10
,
100
,
1000
],
"
gamma
"
:
[
0.001
,
0.0001
],
"
kernel
"
:
[
"
rbf
"
]},
]
classifier
=
GridSearchCV
(
SVC
(),
param_grid
=
param_grid
,
cv
=
3
)
classifier
=
mario
.
wrap
(
[
"
sample
"
,
"
checkpoint
"
],
classifier
,
fit_extra_arguments
=
[(
"
y
"
,
"
is_bonafide
"
)],
model_path
=
"
temp/svm.pkl
"
,
)
# pipeline #
# stateless_pipeline = mario.transformers.StatelessPipeline(
# [
# ("preprocessor", preprocessor),
# ("extractor", extractor),
# ("frame_cont_to_array", frame_cont_to_array),
# ]
# )
frames_classifier
=
make_pipeline
(
frame_cont_to_array
,
classifier
)
pipeline
=
make_pipeline
(
preprocessor
,
extractor
,
frames_classifier
)
Loading