Skip to content

GitLab

  • Menu
Projects Groups Snippets
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in
  • bob.pad.face bob.pad.face
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 1
    • Issues 1
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • bob
  • bob.pad.facebob.pad.face
  • Issues
  • #47

Closed
Open
Created May 18, 2022 by Christophe ECABERT@cecabertDeveloper

Vanilla-pad baseline does not run

Following the documentation, the vanilla-pad baseline can be invoked with:

bob pad vanilla-pad replay-attack svm-frames -o results -vv

This leads to the following exception:

Traceback (most recent call last):
  File "/remote/idiap.svm/temp.biometric03/cecabert/bob_beta/src/bob.pipelines/bob/pipelines/wrappers.py", line 808, in _fit
    self.estimator = self.estimator.fit(X, y, **fit_params)
  File "/remote/idiap.svm/temp.biometric03/cecabert/bob_beta/src/bob.pipelines/bob/pipelines/wrappers.py", line 337, in fit
    self.estimator = self.estimator.fit(X, **kwargs)
  File "/remote/idiap.svm/temp.biometric03/cecabert/mambaforge/envs/bob_deps/lib/python3.10/site-packages/sklearn/svm/_base.py", line 190, in fit
    X, y = self._validate_data(
  File "/remote/idiap.svm/temp.biometric03/cecabert/mambaforge/envs/bob_deps/lib/python3.10/site-packages/sklearn/base.py", line 581, in _validate_data
    X, y = check_X_y(X, y, **check_params)
  File "/remote/idiap.svm/temp.biometric03/cecabert/mambaforge/envs/bob_deps/lib/python3.10/site-packages/sklearn/utils/validation.py", line 964, in check_X_y
    X = check_array(
  File "/remote/idiap.svm/temp.biometric03/cecabert/mambaforge/envs/bob_deps/lib/python3.10/site-packages/sklearn/utils/validation.py", line 794, in check_array
    raise ValueError(
ValueError: Found array with dim 4. Estimator expected <= 2.

The fit method of the SVM classifier is expecting its input to be (n_samples, n_features) which is not what is provided by the VideoToFrames transformer. One possible solution would be to add an intermediate step between the two operations to flatten the data.

Assignee
Assign to
Time tracking