Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bob.pad.face
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
bob
bob.pad.face
Commits
d0565381
Commit
d0565381
authored
7 years ago
by
Guillaume HEUSCH
Browse files
Options
Downloads
Patches
Plain Diff
[preprocessor] started PPGSecure implementation
parent
d028b3f6
No related branches found
No related tags found
1 merge request
!53
WIP: rPPG as features for PAD
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
bob/pad/face/preprocessor/PPGSecure.py
+186
-0
186 additions, 0 deletions
bob/pad/face/preprocessor/PPGSecure.py
with
186 additions
and
0 deletions
bob/pad/face/preprocessor/PPGSecure.py
0 → 100644
+
186
−
0
View file @
d0565381
import
numpy
import
logging
logger
=
logging
.
getLogger
(
"
bob.pad.face
"
)
from
bob.bio.base.preprocessor
import
Preprocessor
from
bob.rppg.base.utils
import
build_bandpass_filter
import
bob.ip.dlib
from
bob.rppg.cvpr14.extract_utils
import
get_mask
from
bob.rppg.cvpr14.extract_utils
import
compute_average_colors_mask
class
PPGSecure
(
Preprocessor
):
"""
This class extract the pulse signal from a video sequence.
The pulse is extracted according to what is described in
the following article:
@InProceedings{nowara-afgr-2017,
Author = {E. M. Nowara and A. Sabharwal and A. Veeraraghavan},
Title = {P{PGS}ecure: {B}iometric {P}resentation {A}ttack
{D}etection {U}sing {P}hotopletysmograms},
BookTitle = {I{EEE} {I}ntl {C}onf on {A}utomatic {F}ace and
{G}esture {R}ecognition ({AFGR})},
Volume = {},
Number = {},
Pages = {56-62},
issn = {},
seq-number = {69},
year = 2017
}
**Parameters:**
indent: int
Indent (in pixels) to apply to keypoints to get the masks.
framerate: int
The framerate of the video sequence.
bp_order: int
The order of the bandpass filter
debug: boolean
Plot some stuff
"""
def
__init__
(
self
,
indent
=
10
,
framerate
=
25
,
bp_order
=
32
,
debug
=
False
,
**
kwargs
):
super
(
PPGSecure
,
self
).
__init__
(
**
kwargs
)
self
.
indent
=
indent
self
.
framerate
=
framerate
self
.
bp_order
=
bp_order
self
.
debug
=
debug
def
__call__
(
self
,
frames
,
annotations
):
"""
Compute the pulse signal for the given frame sequence
**Parameters:**
frames: :pyclass: `bob.bio.video.utils.FrameContainer`
Video data stored in the FrameContainer, see ``bob.bio.video.utils.FrameContainer``
for further details.
annotations: :py:class:`dict`
A dictionary containing annotations of the face bounding box.
Dictionary must be as follows ``{
'
topleft
'
: (row, col),
'
bottomright
'
: (row, col)}``
**Returns:**
pulses: numpy.array of size (5, nb_frame)
The pulse signals from different area of the image
"""
video
=
frames
.
as_array
()
nb_frames
=
video
.
shape
[
0
]
# the mean of the green color of the different ROIs along the sequence
green_mean
=
numpy
.
zeros
((
nb_frames
,
5
),
dtype
=
'
float64
'
)
# build the bandpass filter one and for all
bandpass_filter
=
build_bandpass_filter
(
self
.
framerate
,
self
.
bp_order
,
min_freq
=
0.5
,
max_freq
=
5
,
plot
=
False
)
# landmarks detection
detector
=
bob
.
ip
.
dlib
.
DlibLandmarkExtraction
()
counter
=
0
previous_ldms
=
None
for
i
,
frame
in
enumerate
(
video
):
logger
.
debug
(
"
Processing frame {}/{}
"
.
format
(
counter
,
nb_frames
))
if
self
.
debug
:
from
matplotlib
import
pyplot
pyplot
.
imshow
(
numpy
.
rollaxis
(
numpy
.
rollaxis
(
frame
,
2
),
2
))
pyplot
.
show
()
# detect landmarks
try
:
ldms
=
detector
(
frame
)
except
TypeError
:
# looks like one video from replay mobile is upside down !
rotated_shape
=
bob
.
ip
.
base
.
rotated_output_shape
(
frame
,
180
)
frame_rotated
=
numpy
.
ndarray
(
rotated_shape
,
dtype
=
numpy
.
float64
)
from
bob.ip.base
import
rotate
bob
.
ip
.
base
.
rotate
(
frame
,
frame_rotated
,
180
)
frame_rotated
=
frame_rotated
.
astype
(
numpy
.
uint8
)
logger
.
warning
(
"
Rotating again ...
"
)
try
:
ldms
=
detector
(
frame_rotated
)
except
TypeError
:
ldms
=
previous_ldms
# so do nothing ...
logger
.
warning
(
"
No mask detected in frame {}
"
.
format
(
i
))
face_color
[
i
]
=
0
continue
frame
=
frame_rotated
if
self
.
debug
:
from
matplotlib
import
pyplot
display
=
numpy
.
copy
(
frame
)
for
p
in
ldms
:
bob
.
ip
.
draw
.
plus
(
display
,
p
,
radius
=
5
,
color
=
(
255
,
0
,
0
))
pyplot
.
imshow
(
numpy
.
rollaxis
(
numpy
.
rollaxis
(
display
,
2
),
2
))
pyplot
.
show
()
ldms
=
numpy
.
array
(
ldms
)
masks
=
self
.
_get_masks
(
ldms
)
import
sys
sys
.
exit
()
#for i in range(5):
# face_color[i] = compute_average_colors_mask(frame, mask, self.debug)
#previous_ldms = ldms
#counter += 1
#pulse = numpy.zeros((nb_frames, 3), dtype='float64')
#for i in range(3):
# # detrend
# detrended = detrend(face_color[:, i], self.lambda_)
# # average
# averaged = average(detrended, self.window)
# # bandpass
# from scipy.signal import filtfilt
# pulse[:, i] = filtfilt(bandpass_filter, numpy.array([1]), averaged)
#if self.debug:
# from matplotlib import pyplot
# for i in range(3):
# f, ax = pyplot.subplots(2, sharex=True)
# ax[0].plot(range(face_color.shape[0]), face_color[:, i], 'g')
# ax[0].set_title('Original color signal')
# ax[1].plot(range(face_color.shape[0]), pulse[:, i], 'g')
# ax[1].set_title('Pulse signal')
# pyplot.show()
#return pulse
def
_get_masks
(
ldms
):
"""
get the 5 masks for rPPG signal extraction
**Parameters**
ldms: numpy.array
The landmarks, as retrieved by bob.ip.dlib.DlibLandmarkExtraction()
**Returns**
masks: boolean
"""
# mask 1: forehead
# defined by 12 points: upper eyebrows (points 18 to 27)
# plus two additional points:
# - above 18, at a distance of (18-27)/2
# - above 27, at a distance of (18-27)/2
print
(
ldms
)
print
(
ldms
.
shape
)
mask_points
=
[]
for
i
in
range
(
17
,
28
):
mask_points
.
append
([
int
(
keypoints
[
k
,
0
]),
int
(
keypoints
[
k
,
1
])]))
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment