Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bob.pad.face
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
bob
bob.pad.face
Commits
a746fcfc
Commit
a746fcfc
authored
7 years ago
by
Guillaume HEUSCH
Browse files
Options
Downloads
Patches
Plain Diff
[extractor] added simplified Li pulse extraction
parent
b1c73fbf
No related branches found
No related tags found
1 merge request
!53
WIP: rPPG as features for PAD
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
bob/pad/face/extractor/Li.py
+146
-0
146 additions, 0 deletions
bob/pad/face/extractor/Li.py
with
146 additions
and
0 deletions
bob/pad/face/extractor/Li.py
0 → 100644
+
146
−
0
View file @
a746fcfc
#!/usr/bin/env python
# encoding: utf-8
import
six
import
numpy
import
bob.bio.video
from
bob.bio.base.extractor
import
Extractor
from
bob.pad.face.extractor
import
VideoDataLoader
import
bob.ip.base
import
bob.ip.dlib
import
bob.ip.draw
import
logging
logger
=
logging
.
getLogger
(
"
bob.pad.face
"
)
from
bob.rppg.cvpr14.extract_utils
import
kp66_to_mask
from
bob.rppg.cvpr14.extract_utils
import
compute_average_colors_mask
from
bob.rppg.cvpr14.filter_utils
import
detrend
from
bob.rppg.cvpr14.filter_utils
import
average
from
bob.rppg.base.utils
import
build_bandpass_filter
class
Li
(
Extractor
,
object
):
"""
Extract pulse signal according to Li
'
s CVPR 14 algorithm.
Note that this is a simplified version of the original
pulse extraction algorithms (mask detection in each
frame instead of tranking, no illumination correction,
no motion pruning)
**Parameters:**
indent: int
Indent (in percent of the face width) to apply to keypoints to get the mask.
lamda_: int
the lamba value of the detrend filter
window: int
The size of the window of the average filter
framerate: int
The framerate of the video sequence.
bp_order: int
The order of the bandpass filter
"""
def
__init__
(
self
,
indent
=
10
,
lambda_
=
300
,
window
=
3
,
framerate
=
25
,
bp_order
=
32
,
debug
=
False
,
**
kwargs
):
super
(
Li
,
self
).
__init__
()
self
.
indent
=
indent
self
.
lambda_
=
lambda_
self
.
window
=
window
self
.
framerate
=
framerate
self
.
bp_order
=
bp_order
self
.
debug
=
debug
def
__call__
(
self
,
frames
):
"""
Compute the pulse signal for the given frame sequence
**Parameters:**
frames: FrameContainer or string.
Video data stored in the FrameContainer,
see ``bob.bio.video.utils.FrameContainer`` for further details.
If string, the name of the file to load the video data from is
defined in it. String is possible only when empty preprocessor is
used. In this case video data is loaded directly from the database.
and not using any high or low-level db packages (so beware).
**Returns:**
pulse: numpy.array
The pulse signal
"""
if
isinstance
(
frames
,
six
.
string_types
):
video_loader
=
VideoDataLoader
()
video
=
video_loader
(
frames
)
else
:
video
=
frames
video
=
video
.
as_array
()
nb_frames
=
video
.
shape
[
0
]
# the mean green color of the face along the sequence
face_color
=
numpy
.
zeros
(
nb_frames
,
dtype
=
'
float64
'
)
# build the bandpass filter one and for all
bandpass_filter
=
build_bandpass_filter
(
self
.
framerate
,
self
.
bp_order
,
False
)
# landmarks detection
detector
=
bob
.
ip
.
dlib
.
DlibLandmarkExtraction
()
counter
=
0
previous_ldms
=
None
for
i
,
frame
in
enumerate
(
video
):
logger
.
debug
(
"
Processing frame {}/{}
"
.
format
(
counter
,
nb_frames
))
# detect landmarks
try
:
ldms
=
detector
(
frame
)
except
TypeError
:
ldms
=
previous_ldms
if
self
.
debug
:
from
matplotlib
import
pyplot
display
=
numpy
.
copy
(
frame
)
for
p
in
ldms
:
bob
.
ip
.
draw
.
plus
(
display
,
p
,
radius
=
5
,
color
=
(
255
,
0
,
0
))
pyplot
.
imshow
(
numpy
.
rollaxis
(
numpy
.
rollaxis
(
display
,
2
),
2
))
pyplot
.
show
()
ldms
=
numpy
.
array
(
ldms
)
mask_points
,
mask
=
kp66_to_mask
(
frame
,
ldms
,
self
.
indent
,
False
)
face_color
[
i
]
=
compute_average_colors_mask
(
frame
,
mask
,
False
)
previous_ldms
=
ldms
counter
+=
1
# detrend
detrended
=
detrend
(
face_color
,
self
.
lambda_
)
# average
averaged
=
average
(
detrended
,
self
.
window
)
# bandpass
from
scipy.signal
import
filtfilt
bandpassed
=
filtfilt
(
bandpass_filter
,
numpy
.
array
([
1
]),
averaged
)
if
self
.
debug
:
from
matplotlib
import
pyplot
f
,
ax
=
pyplot
.
subplots
(
4
,
sharex
=
True
)
ax
[
0
].
plot
(
range
(
face_color
.
shape
[
0
]),
face_color
,
'
g
'
)
ax
[
0
].
set_title
(
'
Original signal
'
)
ax
[
1
].
plot
(
range
(
face_color
.
shape
[
0
]),
detrended
,
'
g
'
)
ax
[
1
].
set_title
(
'
After detrending
'
)
ax
[
2
].
plot
(
range
(
face_color
.
shape
[
0
]),
averaged
,
'
g
'
)
ax
[
2
].
set_title
(
'
After averaging
'
)
ax
[
3
].
plot
(
range
(
face_color
.
shape
[
0
]),
bandpassed
,
'
g
'
)
ax
[
3
].
set_title
(
'
Bandpassed signal
'
)
pyplot
.
show
()
return
bandpassed
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment