Skip to content
Snippets Groups Projects
Commit 0a7c4293 authored by Amir MOHAMMADI's avatar Amir MOHAMMADI
Browse files

Merge branch 'chalearn_pad' into 'master'

Chalearn pad

See merge request !87
parents ec03294b 781e0098
No related branches found
No related tags found
1 merge request!87Chalearn pad
Pipeline #27140 passed
......@@ -144,7 +144,7 @@ class CasiaSurfPadDatabase(PadDatabase):
The protocol for which the samples should be retrieved.
purposes : :py:class:`str`
The purposes for which Sample objects should be retrieved.
Usually it is either 'real' or 'attack', but could be 'unknown' as well
Usually it is either 'real' or 'attack'
model_ids
This parameter is not supported in PAD databases yet.
......@@ -160,9 +160,9 @@ class CasiaSurfPadDatabase(PadDatabase):
# for training
lowlevel_purposes = []
if 'train' in groups and purposes == 'real':
if 'train' in groups and 'real' in purposes:
lowlevel_purposes.append('real')
if 'train' in groups and purposes == 'attack':
if 'train' in groups and 'attack' in purposes:
lowlevel_purposes.append('attack')
# for dev and eval
......
......@@ -19,8 +19,10 @@ import bob.ip.base
import importlib
import bob.bio.face
import bob.bio.face
import logging
logger = logging.getLogger("bob.pad.face")
# ==============================================================================
......@@ -551,6 +553,7 @@ class FaceCropAlign(Preprocessor):
self.normalization_function = normalization_function
self.normalization_function_kwargs = normalization_function_kwargs
self.supported_face_detection_method = ["dlib", "mtcnn"]
......@@ -619,6 +622,15 @@ class FaceCropAlign(Preprocessor):
(self.face_size, self.face_size), RGB 3D or gray-scale 2D.
"""
# sanity check:
if not self.rgb_output_flag and len(image.shape) != 2:
logger.warning("This image has 3 channels")
if self.normalization_function is not None:
import bob.ip.color
image = bob.ip.color.rgb_to_gray(image)
logger.warning("Image has been converted to grayscale")
if self.face_detection_method is not None:
if self.max_image_size is not None: # max_image_size = 1920, for example
......@@ -633,7 +645,7 @@ class FaceCropAlign(Preprocessor):
method=self.face_detection_method)
except:
logger.warning("Face not detected")
return None
if not annotations: # if empty dictionary is returned
......@@ -656,7 +668,6 @@ class FaceCropAlign(Preprocessor):
return None
if self.normalization_function is not None:
image = self.normalization_function(image, annotations, **self.normalization_function_kwargs)
norm_face_image = normalize_image_size(image=image,
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment