Executing Baseline Algorithms
This section explains how to execute face presentation attack detection (PAD) algorithms implemented
in bob.pad.face
.
Running Baseline Experiments
To run the baseline PAD experiments, the spoof.py
script located in bin
directory is used.
To see the description of the script you can type in the console:
$ spoof.py --help
This script is explained in more detail in :ref:`bob.pad.base.experiments`.
Usually it is a good idea to have at least verbose level 2 (i.e., calling
spoof.py --verbose --verbose
, or the short version spoof.py
-vv
).
Note
Running in Parallel
To run the experiments in parallel, you can define an SGE grid or local host (multi-processing) configurations as explained in :ref:`running_in_parallel`.
In short, to run in the Idiap SGE grid, you can simply add the --grid
command line option, with grid configuration parameters. To run experiments in parallel on
the local machine, simply add a --parallel <N>
option, where <N>
specifies the number of parallel jobs you want to execute.
Database setups and baselines are encoded using
:ref:`bob.bio.base.configuration-files`, all stored inside the package root, in
the directory bob/pad/face/config
. Documentation for each resource
is available on the section :ref:`bob.pad.face.resources`.
Warning
You cannot run experiments just by executing the command line instructions described in this guide. You need first to procure yourself the raw data files that correspond to each database used here in order to correctly run experiments with those data. Biometric data is considered private date and, under EU regulations, cannot be distributed without a consent or license. You may consult our :ref:`bob.pad.face.resources.databases` resources section for checking currently supported databases and accessing download links for the raw data files.
Once the raw data files have been downloaded, particular attention should be given to the directory locations of those. Unpack the databases carefully and annotate the root directory where they have been unpacked.
Then, carefully read the Databases section of
:ref:`bob.pad.base.installation` on how to correctly setup the
~/.bob_bio_databases.txt
file.
Use the following keywords on the left side of the assignment (see :ref:`bob.pad.face.resources.databases`):
[YOUR_REPLAY_ATTACK_DIRECTORY] = /complete/path/to/replayattack-database/
Notice it is rather important to use the strings as described above,
otherwise bob.pad.base
will not be able to correctly load your images.
Once this step is done, you can proceed with the instructions below.
Baselines on REPLAY-ATTACK database
This section summarizes the results of baseline face PAD experiments on the REPLAY-ATTACK (`replayattack`_) database.
The description of the database-related settings, which are used to run face PAD baselines on the Replay-Attack is given here :ref:`bob.pad.face.resources.databases.replay`. To understand the settings in more details you can check the corresponding configuration file : bob/pad/face/config/replay_attack.py
.
LBP features of facial region + SVM classifier
Detailed description of this PAD pipe-line is given at :ref:`bob.pad.face.resources.face_pad.lbp_svm_replayattack`.
To run this baseline on the `replayattack`_ database, using the grandtest
protocol, execute the following:
$ spoof.py replay-attack lbp-svm \
--sub-directory <PATH_TO_STORE_THE_RESULTS>
Tip
If you are in `idiap`_ you can use SGE grid to speed-up the calculations.
Simply add --grid idiap
argument to the above command. For example:
$ spoof.py replay-attack lbp-svm \
--sub-directory <PATH_TO_STORE_THE_RESULTS> \
--grid idiap
To understand the settings of this baseline PAD experiment you can check the
corresponding configuration file: bob/pad/face/config/lbp_svm.py
To evaluate the results computing EER, HTER and plotting ROC you can use the following command:
evaluate.py \
--dev-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-dev \
--eval-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-eval \
--legends "LBP features of facial region + SVM classifier + REPLAY-ATTACK database" \
-F 7 \
--criterion EER \
--roc <PATH_TO_STORE_THE_RESULTS>/ROC.pdf
The EER/HTER errors for `replayattack`_ database are summarized in the Table below:
Protocol | EER,% | HTER,% |
---|---|---|
grandtest |
15.117 | 15.609 |
The ROC curves for the particular experiment can be downloaded from here:
:download:`ROC curve <img/ROC_lbp_svm_replay_attack.pdf>`
Image Quality Measures as features of facial region + SVM classifier
Detailed description of this PAD pipe-line is given at :ref:`bob.pad.face.resources.face_pad.qm_svm_replayattack`.
To run this baseline on the `replayattack`_ database, using the grandtest
protocol, execute the following:
$ spoof.py replay-attack qm-svm \
--sub-directory <PATH_TO_STORE_THE_RESULTS>
Tip
Similarly to the tip above you can run this baseline in parallel.
To understand the settings of this baseline PAD experiment you can check the
corresponding configuration file: bob/pad/face/config/qm_svm.py
To evaluate the results computing EER, HTER and plotting ROC you can use the following command:
evaluate.py \
--dev-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-dev \
--eval-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-eval \
--legends "IQM features of facial region + SVM classifier + REPLAY-ATTACK database" \
-F 7 \
--criterion EER \
--roc <PATH_TO_STORE_THE_RESULTS>/ROC.pdf
The EER/HTER errors for `replayattack`_ database are summarized in the Table below:
Protocol | EER,% | HTER,% |
---|---|---|
grandtest |
3.987 | 4.571 |
The ROC curves for the particular experiment can be downloaded from here:
:download:`ROC curve <img/ROC_iqm_svm_replay_attack.pdf>`
Frame differences based features (motion analysis) + SVM classifier
Detailed description of this PAD pipe-line is given at :ref:`bob.pad.face.resources.face_pad.frame_diff_svm_replayattack`.
To run this baseline on the `replayattack`_ database, using the grandtest
protocol, execute the following:
$ spoof.py replay-attack frame-diff-svm \
--sub-directory <PATH_TO_STORE_THE_RESULTS>
Tip
Similarly to the tip above you can run this baseline in parallel.
To understand the settings of this baseline PAD experiment you can check the
corresponding configuration file: bob/pad/face/config/frame_diff_svm.py
To evaluate the results computing EER, HTER and plotting ROC you can use the following command:
evaluate.py \
--dev-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-dev \
--eval-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-eval \
--legends "10 features for each window in Frame Differences + SVM classifier + REPLAY-ATTACK database" \
-F 7 \
--criterion EER \
--roc <PATH_TO_STORE_THE_RESULTS>/ROC.pdf
The EER/HTER errors for `replayattack`_ database are summarized in the Table below:
Protocol | EER,% | HTER,% |
---|---|---|
grandtest |
11.752 | 13.195 |
The ROC curves for the particular experiment can be downloaded from here:
:download:`ROC curve <img/ROC_frame_diff_svm_replay_attack.pdf>`
Baselines on REPLAY-MOBILE database
This section summarizes the results of baseline face PAD experiments on the `Replay-Mobile`_ database.
The description of the database-related settings, which are used to run face PAD baselines on the Replay-Mobile is given here :ref:`bob.pad.face.resources.databases.replay_mobile`. To understand the settings in more details you can check the corresponding configuration file : bob/pad/face/config/replay_mobile.py
.
LBP features of facial region + SVM classifier
Detailed description of this PAD pipe-line is given at :ref:`bob.pad.face.resources.face_pad.lbp_svm_replayattack`. Note, that the same PAD pipe-line was used to run experiments on the Replay-Attack database.
To run this baseline on the `Replay-Mobile`_ database, using the grandtest
protocol, execute the following:
$ spoof.py replay-mobile lbp-svm \
--sub-directory <PATH_TO_STORE_THE_RESULTS>
Tip
Similarly to the tip above you can run this baseline in parallel.
To understand the settings of this baseline PAD experiment you can check the
corresponding configuration file: bob/pad/face/config/lbp_svm.py
To evaluate the results computing EER, HTER and plotting ROC you can use the following command:
evaluate.py \
--dev-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-dev \
--eval-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-eval \
--legends "LBP features of facial region + SVM classifier + Replay-Mobile database" \
-F 7 \
--criterion EER \
--roc <PATH_TO_STORE_THE_RESULTS>/ROC.pdf
The EER/HTER errors for the `Replay-Mobile`_ database are summarized in the Table below:
Protocol | EER,% | HTER,% |
---|---|---|
grandtest |
13.814 | 17.174 |
The ROC curves for the particular experiment can be downloaded from here:
:download:`ROC curve <img/ROC_lbp_svm_replay_mobile.pdf>`
Image Quality Measures as features of facial region + SVM classifier
Detailed description of this PAD pipe-line is given at :ref:`bob.pad.face.resources.face_pad.qm_svm_replayattack`. Note, that the same PAD pipe-line was used to run experiments on the Replay-Attack database.
To run this baseline on the `Replay-Mobile`_ database, using the grandtest
protocol, execute the following:
$ spoof.py replay-mobile qm-svm \
--sub-directory <PATH_TO_STORE_THE_RESULTS>
Tip
Similarly to the tip above you can run this baseline in parallel.
To understand the settings of this baseline PAD experiment you can check the
corresponding configuration file: bob/pad/face/config/qm_svm.py
To evaluate the results computing EER, HTER and plotting ROC you can use the following command:
evaluate.py \
--dev-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-dev \
--eval-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-eval \
--legends "IQM features of facial region + SVM classifier + Replay-Mobile database" \
-F 7 \
--criterion EER \
--roc <PATH_TO_STORE_THE_RESULTS>/ROC.pdf
The EER/HTER errors for the `Replay-Mobile`_ database are summarized in the Table below:
Protocol | EER,% | HTER,% |
---|---|---|
grandtest |
1.747 | 4.074 |
The ROC curves for the particular experiment can be downloaded from here:
:download:`ROC curve <img/ROC_iqm_svm_replay_mobile.pdf>`
Frame differences based features (motion analysis) + SVM classifier
Detailed description of this PAD pipe-line is given at :ref:`bob.pad.face.resources.face_pad.frame_diff_svm_replayattack`. Note, that the same PAD pipe-line was used to run experiments on the Replay-Attack database.
To run this baseline on the `Replay-Mobile`_ database, using the grandtest
protocol, execute the following:
$ spoof.py replay-mobile frame-diff-svm \
--sub-directory <PATH_TO_STORE_THE_RESULTS>
Tip
Similarly to the tip above you can run this baseline in parallel.
To understand the settings of this baseline PAD experiment you can check the
corresponding configuration file: bob/pad/face/config/frame_diff_svm.py
To evaluate the results computing EER, HTER and plotting ROC you can use the following command:
evaluate.py \
--dev-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-dev \
--eval-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-eval \
--legends "10 features for each window in Frame Differences + SVM classifier + Replay-Mobile database" \
-F 7 \
--criterion EER \
--roc <PATH_TO_STORE_THE_RESULTS>/ROC.pdf
The EER/HTER errors for the `Replay-Mobile`_ database are summarized in the Table below:
Protocol | EER,% | HTER,% |
---|---|---|
grandtest |
10.801 | 10.414 |
The ROC curves for the particular experiment can be downloaded from here:
:download:`ROC curve <img/ROC_frame_diff_svm_replay_mobile.pdf>`
Baselines on MSU MFSD database
This section summarizes the results of baseline face PAD experiments on the `MSU MFSD`_ database.
The description of the database-related settings, which are used to run face PAD baselines on the MSU MFSD is given here :ref:`bob.pad.face.resources.databases.msu_mfsd`. To understand the settings in more details you can check the corresponding configuration file : bob/pad/face/config/msu_mfsd.py
.
LBP features of facial region + SVM classifier
Detailed description of this PAD pipe-line is given at :ref:`bob.pad.face.resources.face_pad.lbp_svm_replayattack`. Note, that the same PAD pipe-line was used to run experiments on the Replay-Attack database.
To run this baseline on the `MSU MFSD`_ database, using the grandtest
protocol, execute the following:
$ spoof.py msu-mfsd lbp-svm \
--sub-directory <PATH_TO_STORE_THE_RESULTS>
Tip
Similarly to the tip above you can run this baseline in parallel.
To understand the settings of this baseline PAD experiment you can check the
corresponding configuration file: bob/pad/face/config/lbp_svm.py
To evaluate the results computing EER, HTER and plotting ROC you can use the following command:
evaluate.py \
--dev-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-dev \
--eval-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-eval \
--legends "LBP features of facial region + SVM classifier + MSU MFSD database" \
-F 7 \
--criterion EER \
--roc <PATH_TO_STORE_THE_RESULTS>/ROC.pdf
The EER/HTER errors for the `MSU MFSD`_ database are summarized in the Table below:
Protocol | EER,% | HTER,% |
---|---|---|
grandtest |
27.402 | 21.399 |
The ROC curves for the particular experiment can be downloaded from here:
:download:`ROC curve <img/ROC_lbp_svm_msu_mfsd.pdf>`
Image Quality Measures as features of facial region + SVM classifier
Detailed description of this PAD pipe-line is given at :ref:`bob.pad.face.resources.face_pad.qm_svm_replayattack`. Note, that the same PAD pipe-line was used to run experiments on the Replay-Attack database.
To run this baseline on the `MSU MFSD`_ database, using the grandtest
protocol, execute the following:
$ spoof.py msu-mfsd qm-svm \
--sub-directory <PATH_TO_STORE_THE_RESULTS>
Tip
Similarly to the tip above you can run this baseline in parallel.
To understand the settings of this baseline PAD experiment you can check the
corresponding configuration file: bob/pad/face/config/qm_svm.py
To evaluate the results computing EER, HTER and plotting ROC you can use the following command:
evaluate.py \
--dev-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-dev \
--eval-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-eval \
--legends "IQM features of facial region + SVM classifier + MSU MFSD database" \
-F 7 \
--criterion EER \
--roc <PATH_TO_STORE_THE_RESULTS>/ROC.pdf
The EER/HTER errors for the `MSU MFSD`_ database are summarized in the Table below:
Protocol | EER,% | HTER,% |
---|---|---|
grandtest |
3.665 | 4.944 |
The ROC curves for the particular experiment can be downloaded from here:
:download:`ROC curve <img/ROC_iqm_svm_msu_mfsd.pdf>`
Frame differences based features (motion analysis) + SVM classifier
Detailed description of this PAD pipe-line is given at :ref:`bob.pad.face.resources.face_pad.frame_diff_svm_replayattack`. Note, that the same PAD pipe-line was used to run experiments on the Replay-Attack database.
To run this baseline on the `MSU MFSD`_ database, using the grandtest
protocol, execute the following:
$ spoof.py msu-mfsd frame-diff-svm \
--sub-directory <PATH_TO_STORE_THE_RESULTS>
Tip
Similarly to the tip above you can run this baseline in parallel.
To understand the settings of this baseline PAD experiment you can check the
corresponding configuration file: bob/pad/face/config/frame_diff_svm.py
To evaluate the results computing EER, HTER and plotting ROC you can use the following command:
evaluate.py \
--dev-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-dev \
--eval-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-eval \
--legends "10 features for each window in Frame Differences + SVM classifier + MSU MFSD database" \
-F 7 \
--criterion EER \
--roc <PATH_TO_STORE_THE_RESULTS>/ROC.pdf
The EER/HTER errors for the `MSU MFSD`_ database are summarized in the Table below:
Protocol | EER,% | HTER,% |
---|---|---|
grandtest |
25.839 | 17.050 |
The ROC curves for the particular experiment can be downloaded from here:
:download:`ROC curve <img/ROC_frame_diff_svm_msu_mfsd.pdf>`
Baselines on Aggregated Database
This section summarizes the results of baseline face PAD experiments on the Aggregated Database.
The description of the database-related settings, which are used to run face PAD baselines on the Aggregated Db is given here :ref:`bob.pad.face.resources.databases.aggregated_db`. To understand the settings in more details you can check the corresponding configuration file : bob/pad/face/config/aggregated_db.py
.
LBP features of facial region + SVM classifier
Detailed description of this PAD pipe-line is given at :ref:`bob.pad.face.resources.face_pad.lbp_svm_aggregated_db`.
To run this baseline on the :ref:`bob.pad.face.resources.databases.aggregated_db` database, using the grandtest
protocol, execute the following:
$ spoof.py aggregated-db lbp-svm-aggregated-db \
--sub-directory <PATH_TO_STORE_THE_RESULTS>
Tip
Similarly to the tip above you can run this baseline in parallel.
To understand the settings of this baseline PAD experiment you can check the
corresponding configuration file: bob/pad/face/config/lbp_svm_aggregated_db.py
To evaluate the results computing EER, HTER and plotting ROC you can use the following command:
evaluate.py \
--dev-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-dev \
--eval-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-eval \
--legends "LBP features of facial region + SVM classifier + Aggregated database" \
-F 7 \
--criterion EER \
--roc <PATH_TO_STORE_THE_RESULTS>/ROC.pdf
The EER/HTER errors for the :ref:`bob.pad.face.resources.databases.aggregated_db` database are summarized in the Table below:
Protocol | EER,% | HTER,% |
---|---|---|
grandtest |
17.490 | 19.705 |
The ROC curves for the particular experiment can be downloaded from here:
:download:`ROC curve <img/ROC_lbp_svm_aggregated_db.pdf>`
Image Quality Measures as features of facial region + SVM classifier
Detailed description of this PAD pipe-line is given at :ref:`bob.pad.face.resources.face_pad.qm_svm_aggregated_db`.
To run this baseline on the :ref:`bob.pad.face.resources.databases.aggregated_db` database, using the grandtest
protocol, execute the following:
$ spoof.py aggregated-db qm-svm-aggregated-db \
--sub-directory <PATH_TO_STORE_THE_RESULTS>
Tip
Similarly to the tip above you can run this baseline in parallel.
To understand the settings of this baseline PAD experiment you can check the
corresponding configuration file: bob/pad/face/config/qm_svm_aggregated_db.py
To evaluate the results computing EER, HTER and plotting ROC you can use the following command:
evaluate.py \
--dev-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-dev \
--eval-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-eval \
--legends "IQM features of facial region + SVM classifier + Aggregated database" \
-F 7 \
--criterion EER \
--roc <PATH_TO_STORE_THE_RESULTS>/ROC.pdf
The EER/HTER errors for the :ref:`bob.pad.face.resources.databases.aggregated_db` database are summarized in the Table below:
Protocol | EER,% | HTER,% |
---|---|---|
grandtest |
12.710 | 15.253 |
The ROC curves for the particular experiment can be downloaded from here:
:download:`ROC curve <img/ROC_qm_svm_aggregated_db.pdf>`
Frame differences based features (motion analysis) + SVM classifier
Detailed description of this PAD pipe-line is given at :ref:`bob.pad.face.resources.face_pad.frame_diff_svm_aggregated_db`.
To run this baseline on the :ref:`bob.pad.face.resources.databases.aggregated_db` database, using the grandtest
protocol, execute the following:
$ spoof.py aggregated-db frame-diff-svm-aggregated-db \
--sub-directory <PATH_TO_STORE_THE_RESULTS>
Tip
Similarly to the tip above you can run this baseline in parallel.
To understand the settings of this baseline PAD experiment you can check the
corresponding configuration file: bob/pad/face/config/frame_diff_svm_aggregated_db.py
To evaluate the results computing EER, HTER and plotting ROC you can use the following command:
evaluate.py \
--dev-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-dev \
--eval-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-eval \
--legends "10 features for each window in Frame Differences + SVM classifier + Aggregated Db" \
-F 7 \
--criterion EER \
--roc <PATH_TO_STORE_THE_RESULTS>/ROC.pdf
The EER/HTER errors for the :ref:`bob.pad.face.resources.databases.aggregated_db` database are summarized in the Table below:
Protocol | EER,% | HTER,% |
---|---|---|
grandtest |
35.219 | 43.029 |
The ROC curves for the particular experiment can be downloaded from here:
:download:`ROC curve <img/ROC_frame_diff_svm_aggregated_db.pdf>`
Baselines on other databases
This section summarizes the results of baseline face PAD experiments on other databases.
MIFS database + LBP features of facial region + SVM classifier
To run this baseline on the MIFS database, using the grandtest
protocol, execute the following:
$ spoof.py mifs lbp-svm \
--sub-directory <PATH_TO_STORE_THE_RESULTS>
To evaluate the results computing EER, HTER and plotting ROC you can use the following command:
evaluate.py \
--dev-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-dev \
--eval-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-eval \
--legends "LBP features of facial region + SVM classifier + MIFS database" \
-F 7 \
--criterion EER \
--roc <PATH_TO_STORE_THE_RESULTS>/ROC.pdf
The EER/HTER errors for the MIFS database are summarized in the Table below:
Protocol | EER,% | HTER,% |
---|---|---|
grandtest |
27.143 | 32.353 |
MIFS database + Image Quality Measures as features of facial region + SVM classifier
To run this baseline on the MIFS database, using the grandtest
protocol, execute the following:
$ spoof.py mifs qm-svm \
--sub-directory <PATH_TO_STORE_THE_RESULTS>
To evaluate the results computing EER, HTER and plotting ROC you can use the following command:
evaluate.py \
--dev-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-dev \
--eval-files <PATH_TO_STORE_THE_RESULTS>/grandtest/scores/scores-eval \
--legends "IQM features of facial region + SVM classifier + MIFS database" \
-F 7 \
--criterion EER \
--roc <PATH_TO_STORE_THE_RESULTS>/ROC.pdf
The EER/HTER errors for the MIFS database are summarized in the Table below:
Protocol | EER,% | HTER,% |
---|---|---|
grandtest |
34.286 | 28.676 |