Skip to content
Snippets Groups Projects

Gan

Closed Guillaume HEUSCH requested to merge gan into master
1 file
+ 29
0
Compare changes
  • Side-by-side
  • Inline
@@ -12,6 +12,7 @@ import pickle
@@ -12,6 +12,7 @@ import pickle
from collections import OrderedDict
from collections import OrderedDict
from bob.learn.tensorflow.layers import Layer, MaxPooling, Dropout, Conv2D, FullyConnected
from bob.learn.tensorflow.layers import Layer, MaxPooling, Dropout, Conv2D, FullyConnected
 
from bob.learn.tensorflow.layers import ConditionConcat, ImToCondFeatureMap
from bob.learn.tensorflow.utils.session import Session
from bob.learn.tensorflow.utils.session import Session
@@ -91,6 +92,34 @@ class SequenceNetwork(six.with_metaclass(abc.ABCMeta, object)):
@@ -91,6 +92,34 @@ class SequenceNetwork(six.with_metaclass(abc.ABCMeta, object)):
return input_offset
return input_offset
 
def compute_conditional_graph(self, input_data, conditional_data, training=True, scope="net"):
 
""" Given the current conditional network, return the Tensorflow graph.
 
 
Main difference is in the first layer, where we have to take the conditional input into account
 
 
**Parameters**
 
 
input_data: placeholder for the input data
 
 
conditional_data: placeholder for the conditional data
 
"""
 
input_offset = input_data
 
 
for k in self.sequence_net.keys():
 
current_layer = self.sequence_net[k]
 
 
if training:
 
if isinstance(current_layer, ConditionConcat) or isinstance(current_layer, ImToCondFeatureMap):
 
current_layer.create_variables(input_offset, scope=scope)
 
input_offset = current_layer.get_graph(conditional_data)
 
else:
 
current_layer.create_variables(input_offset, scope=scope)
 
input_offset = current_layer.get_graph(training_phase=training)
 
 
return input_offset
 
 
 
def compute_inference_graph(self, feature_layer=None):
def compute_inference_graph(self, feature_layer=None):
"""Generate a graph for feature extraction
"""Generate a graph for feature extraction
Loading