Skip to content
Snippets Groups Projects

biopredict: Handle number of parallel jobs correctly

Merged Amir MOHAMMADI requested to merge predict into master
1 file
+ 69
40
Compare changes
  • Side-by-side
  • Inline
'''Helps training reproducible networks.
'''
import os
import random as rn
import numpy as np
import tensorflow as tf
import random as rn
# from tensorflow.contrib import keras
# reproducible networks
# The below is necessary in Python 3.2.3 onwards to
# have reproducible behavior for certain hash-based operations.
# See these references for further details:
# https://docs.python.org/3.4/using/cmdline.html#envvar-PYTHONHASHSEED
# https://github.com/fchollet/keras/issues/2280#issuecomment-306959926
os.environ['PYTHONHASHSEED'] = '0'
# The below is necessary for starting Numpy generated random numbers
# in a well-defined initial state.
np.random.seed(42)
# The below is necessary for starting core Python generated random numbers
# in a well-defined state.
rn.seed(12345)
# Force TensorFlow to use single thread.
# Multiple threads are a potential source of
# non-reproducible results.
# For further details, see:
# https://stackoverflow.com/questions/42022950/which-seeds-have-to-be-set-where-to-realize-100-reproducibility-of-training-res
session_config = tf.ConfigProto(intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1,
log_device_placement=True)
# The below tf.set_random_seed() will make random number generation
# in the TensorFlow backend have a well-defined initial state.
# For further details, see:
# https://www.tensorflow.org/api_docs/python/tf/set_random_seed
tf_random_seed = 1234
tf.set_random_seed(tf_random_seed)
# sess = tf.Session(graph=tf.get_default_graph(), config=session_config)
# keras.backend.set_session(sess)
run_config = tf.estimator.RunConfig()
run_config = run_config.replace(session_config=session_config)
run_config = run_config.replace(tf_random_seed=tf_random_seed)
def set_seed(seed=0, python_hash_seed=0, log_device_placement=False):
"""Sets the seeds in python, numpy, and tensorflow in order to help
training reproducible networks.
Parameters
----------
seed : :obj:`int`, optional
The seed to set.
python_hash_seed : :obj:`int`, optional
https://docs.python.org/3.4/using/cmdline.html#envvar-PYTHONHASHSEED
log_device_placement : :obj:`bool`, optional
Optionally, log device placement of tensorflow variables.
Returns
-------
:any:`tf.ConfigProto`
Session config.
:any:`tf.estimator.RunConfig`
A run config to help training estimators.
Notes
-----
This functions return a list and its length might change. Please use
indices to select one of returned values. For example
``sess_config, run_config = set_seed()[:2]``.
"""
# reproducible networks
# The below is necessary in Python 3.2.3 onwards to
# have reproducible behavior for certain hash-based operations.
# See these references for further details:
# https://docs.python.org/3.4/using/cmdline.html#envvar-PYTHONHASHSEED
# https://github.com/fchollet/keras/issues/2280#issuecomment-306959926
os.environ['PYTHONHASHSEED'] = '{}'.format(python_hash_seed)
# The below is necessary for starting Numpy generated random numbers
# in a well-defined initial state.
np.random.seed(seed)
# The below is necessary for starting core Python generated random numbers
# in a well-defined state.
rn.seed(seed)
# Force TensorFlow to use single thread.
# Multiple threads are a potential source of
# non-reproducible results.
# For further details, see:
# https://stackoverflow.com/questions/42022950/which-seeds-have-to-be-set-where-to-realize-100-reproducibility-of-training-res
session_config = tf.ConfigProto(intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1,
log_device_placement=log_device_placement)
# The below tf.set_random_seed() will make random number generation
# in the TensorFlow backend have a well-defined initial state.
# For further details, see:
# https://www.tensorflow.org/api_docs/python/tf/set_random_seed
tf.set_random_seed(seed)
# sess = tf.Session(graph=tf.get_default_graph(), config=session_config)
# keras.backend.set_session(sess)
run_config = tf.estimator.RunConfig()
run_config = run_config.replace(session_config=session_config)
run_config = run_config.replace(tf_random_seed=seed)
return [session_config, run_config, None, None, None]
Loading