Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bob.learn.tensorflow
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
This is an archived project. Repository and other project resources are read-only.
Show more breadcrumbs
bob
bob.learn.tensorflow
Merge requests
!33
Changes to the biogenerator
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
Changes to the biogenerator
predict
into
master
Overview
8
Commits
13
Pipelines
2
Changes
2
All threads resolved!
Hide all comments
Merged
Amir MOHAMMADI
requested to merge
predict
into
master
7 years ago
Overview
8
Commits
13
Pipelines
2
Changes
2
All threads resolved!
Hide all comments
Expand
Code clean-up
Modernize the train script.
0
0
Merge request reports
Viewing commit
e1992171
Prev
Next
Show latest version
2 files
+
97
−
58
Side-by-side
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
Files
2
Search (e.g. *.vue) (Ctrl+P)
e1992171
Convert the bio generator to a class
· e1992171
Amir MOHAMMADI
authored
7 years ago
bob/learn/tensorflow/dataset/bio.py
+
88
−
52
Options
import
six
import
six
import
tensorflow
as
tf
import
tensorflow
as
tf
from
bob.bio.base
import
read_original_data
from
bob.bio.base
import
read_original_data
import
logging
logger
=
logging
.
getLogger
(
__name__
)
def
bio_generator
(
database
,
biofiles
,
load_data
=
None
,
biofile_to_label
=
None
,
multiple_samples
=
False
,
repeat
=
False
):
"""
Returns a generator and its output types and shapes based on
bob.bio.base databases.
Parameters
class
BioGenerator
(
object
):
"""
A generator class which wraps bob.bio.base databases so that they can
be used with tf.data.Dataset.from_generator
Attributes
----------
----------
database : :any:`bob.bio.base.database.BioDatabase`
biofile_to_label : :obj:`object`, optional
The database that you want to use.
A callable with the signature of ``label = biofile_to_label(biofile)``.
By default -1 is returned as label.
biofiles : [:any:`bob.bio.base.database.BioFile`]
biofiles : [:any:`bob.bio.base.database.BioFile`]
The list of the bio files .
The list of the bio files .
database : :any:`bob.bio.base.database.BioDatabase`
The database that you want to use.
epoch : int
The number of epochs that have been passed so far.
keys : [str]
The keys of samples obtained by calling ``biofile.make_path(
""
,
""
)``
labels : [int]
The labels obtained by calling ``label = biofile_to_label(biofile)``
load_data : :obj:`object`, optional
load_data : :obj:`object`, optional
A callable with the signature of
A callable with the signature of
``data = load_data(database, biofile)``.
``data = load_data(database, biofile)``.
:any:`bob.bio.base.read_original_data` is used by default.
:any:`bob.bio.base.read_original_data` is wrapped to be used by
biofile_to_label : :obj:`object`, optional
default.
A callable with the signature of ``label = biofile_to_label(biofile)``.
By default -1 is returned as label.
multiple_samples : bool, optional
multiple_samples : bool, optional
If true, it assumes that the bio database
'
s samples actually contain
If true, it assumes that the bio database
'
s samples actually contain
multiple samples. This is useful for when you want to treat video
multiple samples. This is useful for when you want to for example treat
databases as image databases.
video databases as image databases.
repeat : bool, optional
repeat : :obj:`int`, optional
If True, the samples are repeated forever.
The samples are repeated ``repeat`` times. ``-1`` will make it repeat
forever.
Returns
-------
generator : object
A generator function that when called will return the samples. The
samples will be like ``(data, label, key)``.
output_types : (object, object, object)
output_types : (object, object, object)
The types of the returned samples.
The types of the returned samples.
output_shapes : (tf.TensorShape, tf.TensorShape, tf.TensorShape)
output_shapes : (tf.TensorShape, tf.TensorShape, tf.TensorShape)
The shapes of the returned samples.
The shapes of the returned samples.
"""
"""
if
load_data
is
None
:
def
load_data
(
database
,
biofile
):
data
=
read_original_data
(
biofile
,
database
.
original_directory
,
database
.
original_extension
)
return
data
if
biofile_to_label
is
None
:
def
biofile_to_label
(
biofile
):
return
-
1
labels
=
(
biofile_to_label
(
f
)
for
f
in
biofiles
)
keys
=
(
str
(
f
.
make_path
(
""
,
""
))
for
f
in
biofiles
)
def
generator
():
def
__init__
(
self
,
database
,
biofiles
,
load_data
=
None
,
biofile_to_label
=
None
,
multiple_samples
=
False
,
repeat
=
1
):
if
load_data
is
None
:
def
load_data
(
database
,
biofile
):
data
=
read_original_data
(
biofile
,
database
.
original_directory
,
database
.
original_extension
)
return
data
if
biofile_to_label
is
None
:
def
biofile_to_label
(
biofile
):
return
-
1
self
.
labels
=
(
biofile_to_label
(
f
)
for
f
in
biofiles
)
self
.
keys
=
(
str
(
f
.
make_path
(
""
,
""
))
for
f
in
biofiles
)
self
.
database
=
database
self
.
biofiles
=
biofiles
self
.
load_data
=
load_data
self
.
biofile_to_label
=
biofile_to_label
self
.
multiple_samples
=
multiple_samples
self
.
repeat
=
repeat
self
.
epoch
=
0
# load one data to get its type and shape
data
=
load_data
(
database
,
biofiles
[
0
])
if
multiple_samples
:
try
:
data
=
data
[
0
]
except
TypeError
:
# if the data is a generator
data
=
six
.
next
(
data
)
data
=
tf
.
convert_to_tensor
(
data
)
self
.
_output_types
=
(
data
.
dtype
,
tf
.
int64
,
tf
.
string
)
self
.
_output_shapes
=
(
data
.
shape
,
tf
.
TensorShape
([]),
tf
.
TensorShape
([]))
logger
.
debug
(
"
Initializing a dataset with %d files and %s types
"
"
and %s shapes
"
,
len
(
self
.
biofiles
),
self
.
output_types
,
self
.
output_shapes
)
@property
def
output_types
(
self
):
return
self
.
_output_types
@property
def
output_shapes
(
self
):
return
self
.
_output_shapes
def
__call__
(
self
):
"""
A generator function that when called will return the samples.
Yields
------
(data, label, key) : tuple
A tuple containing the data, label, and the key.
"""
while
True
:
while
True
:
for
f
,
label
,
key
in
six
.
moves
.
zip
(
biofiles
,
labels
,
keys
):
for
f
,
label
,
key
in
six
.
moves
.
zip
(
data
=
load_data
(
database
,
f
)
self
.
biofiles
,
self
.
labels
,
self
.
keys
):
data
=
self
.
load_data
(
self
.
database
,
f
)
# labels
# labels
if
multiple_samples
:
if
self
.
multiple_samples
:
for
d
in
data
:
for
d
in
data
:
yield
(
d
,
label
,
key
)
yield
(
d
,
label
,
key
)
else
:
else
:
yield
(
data
,
label
,
key
)
yield
(
data
,
label
,
key
)
if
not
repeat
:
self
.
epoch
+=
1
logger
.
info
(
"
Elapsed %d epochs
"
,
self
.
epoch
)
if
self
.
repeat
!=
-
1
and
self
.
epoch
>=
self
.
repeat
:
break
break
# load one data to get its type and shape
data
=
load_data
(
database
,
biofiles
[
0
])
if
multiple_samples
:
try
:
data
=
data
[
0
]
except
TypeError
:
# if the data is a generator
data
=
six
.
next
(
data
)
data
=
tf
.
convert_to_tensor
(
data
)
output_types
=
(
data
.
dtype
,
tf
.
int64
,
tf
.
string
)
output_shapes
=
(
data
.
shape
,
tf
.
TensorShape
([]),
tf
.
TensorShape
([]))
return
(
generator
,
output_types
,
output_shapes
)
Loading