Skip to content
Snippets Groups Projects

Organizing transfer learning

Merged Tiago de Freitas Pereira requested to merge organizing-transfer-learning into master
9 files
+ 22
23
Compare changes
  • Side-by-side
  • Inline
Files
9
@@ -140,7 +140,7 @@ class Logits(estimator.Estimator):
is_trainable = is_trainable_checkpoint(self.extra_checkpoint)
# Building the training graph
prelogits = self.architecture(data, is_training_mode = True, trainable_variables=is_trainable)[0]
prelogits = self.architecture(data, mode=mode, trainable_variables=is_trainable)[0]
logits = append_logits(prelogits, n_classes)
# Compute Loss (for both TRAIN and EVAL modes)
@@ -157,7 +157,7 @@ class Logits(estimator.Estimator):
# Building the training graph for PREDICTION OR VALIDATION
prelogits = self.architecture(data, is_training_mode = False, trainable_variables=False)[0]
prelogits = self.architecture(data, mode=mode, trainable_variables=False)[0]
logits = append_logits(prelogits, n_classes)
if self.embedding_validation:
@@ -295,7 +295,7 @@ class LogitsCenterLoss(estimator.Estimator):
is_trainable = is_trainable_checkpoint(self.extra_checkpoint)
# Building the training graph
prelogits = self.architecture(data, is_training_mode = True, trainable_variables=is_trainable)[0]
prelogits = self.architecture(data, mode=mode, trainable_variables=is_trainable)[0]
logits = append_logits(prelogits, n_classes)
# Compute Loss (for TRAIN mode)
@@ -316,7 +316,7 @@ class LogitsCenterLoss(estimator.Estimator):
train_op=train_op)
# Building the training graph for PREDICTION OR VALIDATION
prelogits = self.architecture(data, is_training_mode = False, trainable_variables=False)[0]
prelogits = self.architecture(data, mode=mode, trainable_variables=False)[0]
logits = append_logits(prelogits, n_classes)
if self.embedding_validation:
Loading