Skip to content
Snippets Groups Projects

Updates

Merged Tiago de Freitas Pereira requested to merge updates into master
2 files
+ 247
0
Compare changes
  • Side-by-side
  • Inline

Files

 
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
 
#
 
# Licensed under the Apache License, Version 2.0 (the "License");
 
# you may not use this file except in compliance with the License.
 
# You may obtain a copy of the License at
 
#
 
# http://www.apache.org/licenses/LICENSE-2.0
 
#
 
# Unless required by applicable law or agreed to in writing, software
 
# distributed under the License is distributed on an "AS IS" BASIS,
 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
# See the License for the specific language governing permissions and
 
# limitations under the License.
 
# ==============================================================================
 
 
"""Contains the definition of the Inception Resnet V1 architecture.
 
As described in http://arxiv.org/abs/1602.07261.
 
Inception-v4, Inception-ResNet and the Impact of Residual Connections
 
on Learning
 
Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi
 
"""
 
from __future__ import absolute_import
 
from __future__ import division
 
from __future__ import print_function
 
 
import tensorflow as tf
 
import tensorflow.contrib.slim as slim
 
 
# Inception-Renset-A
 
def block35(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
 
"""Builds the 35x35 resnet block."""
 
with tf.variable_scope(scope, 'Block35', [net], reuse=reuse):
 
with tf.variable_scope('Branch_0'):
 
tower_conv = slim.conv2d(net, 32, 1, scope='Conv2d_1x1')
 
with tf.variable_scope('Branch_1'):
 
tower_conv1_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
 
tower_conv1_1 = slim.conv2d(tower_conv1_0, 32, 3, scope='Conv2d_0b_3x3')
 
with tf.variable_scope('Branch_2'):
 
tower_conv2_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
 
tower_conv2_1 = slim.conv2d(tower_conv2_0, 32, 3, scope='Conv2d_0b_3x3')
 
tower_conv2_2 = slim.conv2d(tower_conv2_1, 32, 3, scope='Conv2d_0c_3x3')
 
mixed = tf.concat([tower_conv, tower_conv1_1, tower_conv2_2], 3)
 
up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
 
activation_fn=None, scope='Conv2d_1x1')
 
net += scale * up
 
if activation_fn:
 
net = activation_fn(net)
 
return net
 
 
# Inception-Renset-B
 
def block17(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
 
"""Builds the 17x17 resnet block."""
 
with tf.variable_scope(scope, 'Block17', [net], reuse=reuse):
 
with tf.variable_scope('Branch_0'):
 
tower_conv = slim.conv2d(net, 128, 1, scope='Conv2d_1x1')
 
with tf.variable_scope('Branch_1'):
 
tower_conv1_0 = slim.conv2d(net, 128, 1, scope='Conv2d_0a_1x1')
 
tower_conv1_1 = slim.conv2d(tower_conv1_0, 128, [1, 7],
 
scope='Conv2d_0b_1x7')
 
tower_conv1_2 = slim.conv2d(tower_conv1_1, 128, [7, 1],
 
scope='Conv2d_0c_7x1')
 
mixed = tf.concat([tower_conv, tower_conv1_2], 3)
 
up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
 
activation_fn=None, scope='Conv2d_1x1')
 
net += scale * up
 
if activation_fn:
 
net = activation_fn(net)
 
return net
 
 
 
# Inception-Resnet-C
 
def block8(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
 
"""Builds the 8x8 resnet block."""
 
with tf.variable_scope(scope, 'Block8', [net], reuse=reuse):
 
with tf.variable_scope('Branch_0'):
 
tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')
 
with tf.variable_scope('Branch_1'):
 
tower_conv1_0 = slim.conv2d(net, 192, 1, scope='Conv2d_0a_1x1')
 
tower_conv1_1 = slim.conv2d(tower_conv1_0, 192, [1, 3],
 
scope='Conv2d_0b_1x3')
 
tower_conv1_2 = slim.conv2d(tower_conv1_1, 192, [3, 1],
 
scope='Conv2d_0c_3x1')
 
mixed = tf.concat([tower_conv, tower_conv1_2], 3)
 
up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
 
activation_fn=None, scope='Conv2d_1x1')
 
net += scale * up
 
if activation_fn:
 
net = activation_fn(net)
 
return net
 
 
def reduction_a(net, k, l, m, n):
 
with tf.variable_scope('Branch_0'):
 
tower_conv = slim.conv2d(net, n, 3, stride=2, padding='VALID',
 
scope='Conv2d_1a_3x3')
 
with tf.variable_scope('Branch_1'):
 
tower_conv1_0 = slim.conv2d(net, k, 1, scope='Conv2d_0a_1x1')
 
tower_conv1_1 = slim.conv2d(tower_conv1_0, l, 3,
 
scope='Conv2d_0b_3x3')
 
tower_conv1_2 = slim.conv2d(tower_conv1_1, m, 3,
 
stride=2, padding='VALID',
 
scope='Conv2d_1a_3x3')
 
with tf.variable_scope('Branch_2'):
 
tower_pool = slim.max_pool2d(net, 3, stride=2, padding='VALID',
 
scope='MaxPool_1a_3x3')
 
net = tf.concat([tower_conv, tower_conv1_2, tower_pool], 3)
 
return net
 
 
def reduction_b(net):
 
with tf.variable_scope('Branch_0'):
 
tower_conv = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
 
tower_conv_1 = slim.conv2d(tower_conv, 384, 3, stride=2,
 
padding='VALID', scope='Conv2d_1a_3x3')
 
with tf.variable_scope('Branch_1'):
 
tower_conv1 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
 
tower_conv1_1 = slim.conv2d(tower_conv1, 256, 3, stride=2,
 
padding='VALID', scope='Conv2d_1a_3x3')
 
with tf.variable_scope('Branch_2'):
 
tower_conv2 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
 
tower_conv2_1 = slim.conv2d(tower_conv2, 256, 3,
 
scope='Conv2d_0b_3x3')
 
tower_conv2_2 = slim.conv2d(tower_conv2_1, 256, 3, stride=2,
 
padding='VALID', scope='Conv2d_1a_3x3')
 
with tf.variable_scope('Branch_3'):
 
tower_pool = slim.max_pool2d(net, 3, stride=2, padding='VALID',
 
scope='MaxPool_1a_3x3')
 
net = tf.concat([tower_conv_1, tower_conv1_1,
 
tower_conv2_2, tower_pool], 3)
 
return net
 
 
def inference(images, keep_probability, phase_train=True,
 
bottleneck_layer_size=128, weight_decay=0.0, reuse=None):
 
batch_norm_params = {
 
# Decay for the moving averages.
 
'decay': 0.995,
 
# epsilon to prevent 0s in variance.
 
'epsilon': 0.001,
 
# force in-place updates of mean and variance estimates
 
'updates_collections': None,
 
# Moving averages ends up in the trainable variables collection
 
'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ],
 
}
 
 
with slim.arg_scope([slim.conv2d, slim.fully_connected],
 
weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
 
weights_regularizer=slim.l2_regularizer(weight_decay),
 
normalizer_fn=slim.batch_norm,
 
normalizer_params=batch_norm_params):
 
return inception_resnet_v1(images, is_training=phase_train,
 
dropout_keep_prob=keep_probability, bottleneck_layer_size=bottleneck_layer_size, reuse=reuse)
 
 
 
def inception_resnet_v1(inputs, is_training=True,
 
dropout_keep_prob=0.8,
 
bottleneck_layer_size=128,
 
reuse=None,
 
scope='InceptionResnetV1'):
 
"""Creates the Inception Resnet V1 model.
 
Args:
 
inputs: a 4-D tensor of size [batch_size, height, width, 3].
 
num_classes: number of predicted classes.
 
is_training: whether is training or not.
 
dropout_keep_prob: float, the fraction to keep before final layer.
 
reuse: whether or not the network and its variables should be reused. To be
 
able to reuse 'scope' must be given.
 
scope: Optional variable_scope.
 
Returns:
 
logits: the logits outputs of the model.
 
end_points: the set of end_points from the inception model.
 
"""
 
end_points = {}
 
 
with tf.variable_scope(scope, 'InceptionResnetV1', [inputs], reuse=reuse):
 
with slim.arg_scope([slim.batch_norm, slim.dropout],
 
is_training=is_training):
 
with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
 
stride=1, padding='SAME'):
 
 
# 149 x 149 x 32
 
net = slim.conv2d(inputs, 32, 3, stride=2, padding='VALID',
 
scope='Conv2d_1a_3x3')
 
end_points['Conv2d_1a_3x3'] = net
 
# 147 x 147 x 32
 
net = slim.conv2d(net, 32, 3, padding='VALID',
 
scope='Conv2d_2a_3x3')
 
end_points['Conv2d_2a_3x3'] = net
 
# 147 x 147 x 64
 
net = slim.conv2d(net, 64, 3, scope='Conv2d_2b_3x3')
 
end_points['Conv2d_2b_3x3'] = net
 
# 73 x 73 x 64
 
net = slim.max_pool2d(net, 3, stride=2, padding='VALID',
 
scope='MaxPool_3a_3x3')
 
end_points['MaxPool_3a_3x3'] = net
 
# 73 x 73 x 80
 
net = slim.conv2d(net, 80, 1, padding='VALID',
 
scope='Conv2d_3b_1x1')
 
end_points['Conv2d_3b_1x1'] = net
 
# 71 x 71 x 192
 
net = slim.conv2d(net, 192, 3, padding='VALID',
 
scope='Conv2d_4a_3x3')
 
end_points['Conv2d_4a_3x3'] = net
 
# 35 x 35 x 256
 
net = slim.conv2d(net, 256, 3, stride=2, padding='VALID',
 
scope='Conv2d_4b_3x3')
 
end_points['Conv2d_4b_3x3'] = net
 
 
# 5 x Inception-resnet-A
 
net = slim.repeat(net, 5, block35, scale=0.17)
 
end_points['Mixed_5a'] = net
 
 
# Reduction-A
 
with tf.variable_scope('Mixed_6a'):
 
net = reduction_a(net, 192, 192, 256, 384)
 
end_points['Mixed_6a'] = net
 
 
# 10 x Inception-Resnet-B
 
net = slim.repeat(net, 10, block17, scale=0.10)
 
end_points['Mixed_6b'] = net
 
 
# Reduction-B
 
with tf.variable_scope('Mixed_7a'):
 
net = reduction_b(net)
 
end_points['Mixed_7a'] = net
 
 
# 5 x Inception-Resnet-C
 
net = slim.repeat(net, 5, block8, scale=0.20)
 
end_points['Mixed_8a'] = net
 
 
net = block8(net, activation_fn=None)
 
end_points['Mixed_8b'] = net
 
 
with tf.variable_scope('Logits'):
 
end_points['PrePool'] = net
 
#pylint: disable=no-member
 
net = slim.avg_pool2d(net, net.get_shape()[1:3], padding='VALID',
 
scope='AvgPool_1a_8x8')
 
net = slim.flatten(net)
 
 
net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
 
scope='Dropout')
 
 
end_points['PreLogitsFlatten'] = net
 
 
net = slim.fully_connected(net, bottleneck_layer_size, activation_fn=None,
 
scope='Bottleneck', reuse=False)
 
 
return net, end_points
Loading