Skip to content
Snippets Groups Projects

Updates

Merged Tiago de Freitas Pereira requested to merge updates into master
1 file
+ 50
49
Compare changes
  • Side-by-side
  • Inline
@@ -27,41 +27,41 @@ import tensorflow as tf
import tensorflow.contrib.slim as slim
# Inception-Renset-A
def block35(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
def block35(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None, is_training=True):
"""Builds the 35x35 resnet block."""
with tf.variable_scope(scope, 'Block35', [net], reuse=reuse):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 32, 1, scope='Conv2d_1x1')
tower_conv = slim.conv2d(net, 32, 1, scope='Conv2d_1x1', trainable=is_training)
with tf.variable_scope('Branch_1'):
tower_conv1_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(tower_conv1_0, 32, 3, scope='Conv2d_0b_3x3')
tower_conv1_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1', trainable=is_training)
tower_conv1_1 = slim.conv2d(tower_conv1_0, 32, 3, scope='Conv2d_0b_3x3', trainable=is_training)
with tf.variable_scope('Branch_2'):
tower_conv2_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
tower_conv2_1 = slim.conv2d(tower_conv2_0, 48, 3, scope='Conv2d_0b_3x3')
tower_conv2_2 = slim.conv2d(tower_conv2_1, 64, 3, scope='Conv2d_0c_3x3')
tower_conv2_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1', trainable=is_training)
tower_conv2_1 = slim.conv2d(tower_conv2_0, 48, 3, scope='Conv2d_0b_3x3', trainable=is_training)
tower_conv2_2 = slim.conv2d(tower_conv2_1, 64, 3, scope='Conv2d_0c_3x3', trainable=is_training)
mixed = tf.concat([tower_conv, tower_conv1_1, tower_conv2_2], 3)
up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
activation_fn=None, scope='Conv2d_1x1')
activation_fn=None, scope='Conv2d_1x1', trainable=is_training)
net += scale * up
if activation_fn:
net = activation_fn(net)
return net
# Inception-Renset-B
def block17(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
def block17(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None, is_training=True):
"""Builds the 17x17 resnet block."""
with tf.variable_scope(scope, 'Block17', [net], reuse=reuse):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')
tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1', trainable=is_training)
with tf.variable_scope('Branch_1'):
tower_conv1_0 = slim.conv2d(net, 128, 1, scope='Conv2d_0a_1x1')
tower_conv1_0 = slim.conv2d(net, 128, 1, scope='Conv2d_0a_1x1', trainable=is_training)
tower_conv1_1 = slim.conv2d(tower_conv1_0, 160, [1, 7],
scope='Conv2d_0b_1x7')
scope='Conv2d_0b_1x7', trainable=is_training)
tower_conv1_2 = slim.conv2d(tower_conv1_1, 192, [7, 1],
scope='Conv2d_0c_7x1')
scope='Conv2d_0c_7x1', trainable=is_training)
mixed = tf.concat([tower_conv, tower_conv1_2], 3)
up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
activation_fn=None, scope='Conv2d_1x1')
activation_fn=None, scope='Conv2d_1x1', trainable=is_training)
net += scale * up
if activation_fn:
net = activation_fn(net)
@@ -69,20 +69,20 @@ def block17(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
# Inception-Resnet-C
def block8(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
def block8(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None, is_training=True):
"""Builds the 8x8 resnet block."""
with tf.variable_scope(scope, 'Block8', [net], reuse=reuse):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')
tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1', trainable=is_training)
with tf.variable_scope('Branch_1'):
tower_conv1_0 = slim.conv2d(net, 192, 1, scope='Conv2d_0a_1x1')
tower_conv1_0 = slim.conv2d(net, 192, 1, scope='Conv2d_0a_1x1', trainable=is_training)
tower_conv1_1 = slim.conv2d(tower_conv1_0, 224, [1, 3],
scope='Conv2d_0b_1x3')
scope='Conv2d_0b_1x3', trainable=is_training)
tower_conv1_2 = slim.conv2d(tower_conv1_1, 256, [3, 1],
scope='Conv2d_0c_3x1')
scope='Conv2d_0c_3x1', trainable=is_training)
mixed = tf.concat([tower_conv, tower_conv1_2], 3)
up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
activation_fn=None, scope='Conv2d_1x1')
activation_fn=None, scope='Conv2d_1x1', trainable=is_training)
net += scale * up
if activation_fn:
net = activation_fn(net)
@@ -146,14 +146,14 @@ def inception_resnet_v2(inputs, is_training=True,
# 149 x 149 x 32
net = slim.conv2d(inputs, 32, 3, stride=2, padding='VALID',
scope='Conv2d_1a_3x3')
scope='Conv2d_1a_3x3', trainable=is_training)
end_points['Conv2d_1a_3x3'] = net
# 147 x 147 x 32
net = slim.conv2d(net, 32, 3, padding='VALID',
scope='Conv2d_2a_3x3')
scope='Conv2d_2a_3x3', trainable=is_training)
end_points['Conv2d_2a_3x3'] = net
# 147 x 147 x 64
net = slim.conv2d(net, 64, 3, scope='Conv2d_2b_3x3')
net = slim.conv2d(net, 64, 3, scope='Conv2d_2b_3x3', trainable=is_training)
end_points['Conv2d_2b_3x3'] = net
# 73 x 73 x 64
net = slim.max_pool2d(net, 3, stride=2, padding='VALID',
@@ -161,11 +161,11 @@ def inception_resnet_v2(inputs, is_training=True,
end_points['MaxPool_3a_3x3'] = net
# 73 x 73 x 80
net = slim.conv2d(net, 80, 1, padding='VALID',
scope='Conv2d_3b_1x1')
scope='Conv2d_3b_1x1', trainable=is_training)
end_points['Conv2d_3b_1x1'] = net
# 71 x 71 x 192
net = slim.conv2d(net, 192, 3, padding='VALID',
scope='Conv2d_4a_3x3')
scope='Conv2d_4a_3x3', trainable=is_training)
end_points['Conv2d_4a_3x3'] = net
# 35 x 35 x 192
net = slim.max_pool2d(net, 3, stride=2, padding='VALID',
@@ -175,63 +175,63 @@ def inception_resnet_v2(inputs, is_training=True,
# 35 x 35 x 320
with tf.variable_scope('Mixed_5b'):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 96, 1, scope='Conv2d_1x1')
tower_conv = slim.conv2d(net, 96, 1, scope='Conv2d_1x1', trainable=is_training)
with tf.variable_scope('Branch_1'):
tower_conv1_0 = slim.conv2d(net, 48, 1, scope='Conv2d_0a_1x1')
tower_conv1_0 = slim.conv2d(net, 48, 1, scope='Conv2d_0a_1x1', trainable=is_training)
tower_conv1_1 = slim.conv2d(tower_conv1_0, 64, 5,
scope='Conv2d_0b_5x5')
scope='Conv2d_0b_5x5', trainable=is_training)
with tf.variable_scope('Branch_2'):
tower_conv2_0 = slim.conv2d(net, 64, 1, scope='Conv2d_0a_1x1')
tower_conv2_0 = slim.conv2d(net, 64, 1, scope='Conv2d_0a_1x1', trainable=is_training)
tower_conv2_1 = slim.conv2d(tower_conv2_0, 96, 3,
scope='Conv2d_0b_3x3')
scope='Conv2d_0b_3x3', trainable=is_training)
tower_conv2_2 = slim.conv2d(tower_conv2_1, 96, 3,
scope='Conv2d_0c_3x3')
scope='Conv2d_0c_3x3', trainable=is_training)
with tf.variable_scope('Branch_3'):
tower_pool = slim.avg_pool2d(net, 3, stride=1, padding='SAME',
scope='AvgPool_0a_3x3')
tower_pool_1 = slim.conv2d(tower_pool, 64, 1,
scope='Conv2d_0b_1x1')
scope='Conv2d_0b_1x1', trainable=is_training)
net = tf.concat([tower_conv, tower_conv1_1,
tower_conv2_2, tower_pool_1], 3)
end_points['Mixed_5b'] = net
net = slim.repeat(net, 10, block35, scale=0.17)
net = slim.repeat(net, 10, block35, scale=0.17,is_training=is_training)
# 17 x 17 x 1024
with tf.variable_scope('Mixed_6a'):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 384, 3, stride=2, padding='VALID',
scope='Conv2d_1a_3x3')
scope='Conv2d_1a_3x3', trainable=is_training)
with tf.variable_scope('Branch_1'):
tower_conv1_0 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
tower_conv1_0 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1', trainable=is_training)
tower_conv1_1 = slim.conv2d(tower_conv1_0, 256, 3,
scope='Conv2d_0b_3x3')
scope='Conv2d_0b_3x3', trainable=is_training)
tower_conv1_2 = slim.conv2d(tower_conv1_1, 384, 3,
stride=2, padding='VALID',
scope='Conv2d_1a_3x3')
scope='Conv2d_1a_3x3', trainable=is_training)
with tf.variable_scope('Branch_2'):
tower_pool = slim.max_pool2d(net, 3, stride=2, padding='VALID',
scope='MaxPool_1a_3x3')
net = tf.concat([tower_conv, tower_conv1_2, tower_pool], 3)
end_points['Mixed_6a'] = net
net = slim.repeat(net, 20, block17, scale=0.10)
net = slim.repeat(net, 20, block17, scale=0.10,is_training=is_training)
with tf.variable_scope('Mixed_7a'):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
tower_conv = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1', trainable=is_training)
tower_conv_1 = slim.conv2d(tower_conv, 384, 3, stride=2,
padding='VALID', scope='Conv2d_1a_3x3')
padding='VALID', scope='Conv2d_1a_3x3', trainable=is_training)
with tf.variable_scope('Branch_1'):
tower_conv1 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
tower_conv1 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1', trainable=is_training)
tower_conv1_1 = slim.conv2d(tower_conv1, 288, 3, stride=2,
padding='VALID', scope='Conv2d_1a_3x3')
padding='VALID', scope='Conv2d_1a_3x3', trainable=is_training)
with tf.variable_scope('Branch_2'):
tower_conv2 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
tower_conv2 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1', trainable=is_training)
tower_conv2_1 = slim.conv2d(tower_conv2, 288, 3,
scope='Conv2d_0b_3x3')
scope='Conv2d_0b_3x3', trainable=is_training)
tower_conv2_2 = slim.conv2d(tower_conv2_1, 320, 3, stride=2,
padding='VALID', scope='Conv2d_1a_3x3')
padding='VALID', scope='Conv2d_1a_3x3', trainable=is_training)
with tf.variable_scope('Branch_3'):
tower_pool = slim.max_pool2d(net, 3, stride=2, padding='VALID',
scope='MaxPool_1a_3x3')
@@ -240,10 +240,10 @@ def inception_resnet_v2(inputs, is_training=True,
end_points['Mixed_7a'] = net
net = slim.repeat(net, 9, block8, scale=0.20)
net = block8(net, activation_fn=None)
net = slim.repeat(net, 9, block8, scale=0.20,is_training=is_training)
net = block8(net, activation_fn=None,is_training=is_training)
net = slim.conv2d(net, 1536, 1, scope='Conv2d_7b_1x1')
net = slim.conv2d(net, 1536, 1, scope='Conv2d_7b_1x1', trainable=is_training)
end_points['Conv2d_7b_1x1'] = net
with tf.variable_scope('Logits'):
@@ -259,7 +259,8 @@ def inception_resnet_v2(inputs, is_training=True,
end_points['PreLogitsFlatten'] = net
net = slim.fully_connected(net, bottleneck_layer_size, activation_fn=None,
scope='Bottleneck', reuse=False)
scope='Bottleneck', reuse=False, trainable=is_training)
end_points['Bottleneck'] = net
return net, end_points
Loading