Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bob.learn.tensorflow
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
This is an archived project. Repository and other project resources are read-only.
Show more breadcrumbs
bob
bob.learn.tensorflow
Merge requests
!15
Updates
Code
Review changes
Check out branch
Download
Patches
Plain diff
Expand sidebar
Merged
Updates
updates
into
master
Overview
0
Commits
7
Pipelines
1
Changes
2
Merged
Tiago de Freitas Pereira
requested to merge
updates
into
master
7 years ago
Overview
0
Commits
7
Pipelines
1
Changes
2
Patched the train.py script to accept tensors as input
Crafted a script that generates LFW pairs for validation
Implemented a validation mechanism using embeddings
0
0
Merge request reports
Viewing commit
9359b23d
Prev
Next
Show latest version
2 files
+
101
−
1
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
Files
2
9359b23d
Crafted a script tha generates LFW pairs for validation
· 9359b23d
Tiago de Freitas Pereira
authored
7 years ago
bob/learn/tensorflow/script/lfw_db_to_tfrecords.py
0 → 100644
+
99
−
0
View file @ 9359b23d
Edit in single-file editor
Open in Web IDE
#!/usr/bin/env python
"""
Script that converts bob.db.lfw database to TF records
Usage:
%(prog)s <data-path> <output-file> [--extension=<arg> --protocol=<arg> --verbose]
%(prog)s --help
%(prog)s --version
Options:
-h --help show this help message and exit
<data-path> Path that contains the features
--extension=<arg> Default feature extension [default: .hdf5]
--protocol=<arg> One of the LFW protocols [default: view1]
The possible protocol options are the following:
'
view1
'
,
'
fold1
'
,
'
fold2
'
,
'
fold3
'
,
'
fold4
'
,
'
fold5
'
,
'
fold6
'
,
'
fold7
'
,
'
fold8
'
,
'
fold9
'
,
'
fold10
'
More details about our interface to LFW database can be found in
https://www.idiap.ch/software/bob/docs/bob/bob.db.lfw/master/index.html.
"""
import
tensorflow
as
tf
from
bob.io.base
import
create_directories_safe
from
bob.bio.base.utils
import
load
,
read_config_file
from
bob.core.log
import
setup
,
set_verbosity_level
import
bob.db.lfw
import
os
import
bob.io.image
import
bob.io.base
logger
=
setup
(
__name__
)
def
_bytes_feature
(
value
):
return
tf
.
train
.
Feature
(
bytes_list
=
tf
.
train
.
BytesList
(
value
=
[
value
]))
def
_int64_feature
(
value
):
return
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
[
value
]))
def
file_to_label
(
client_ids
,
f
):
return
client_ids
[
str
(
f
.
client_id
)]
def
get_pairs
(
all_pairs
,
match
=
True
):
pairs
=
[]
for
p
in
all_pairs
:
if
p
.
is_match
==
match
:
pairs
.
append
(
p
.
enroll_file
)
pairs
.
append
(
p
.
probe_file
)
return
pairs
def
main
(
argv
=
None
):
from
docopt
import
docopt
args
=
docopt
(
__doc__
,
version
=
''
)
data_path
=
args
[
'
<data-path>
'
]
output_file
=
args
[
'
<output-file>
'
]
extension
=
args
[
'
--extension
'
]
protocol
=
args
[
'
--protocol
'
]
#Setting the reader
reader
=
bob
.
io
.
base
.
load
# Sets-up logging
if
args
[
'
--verbose
'
]:
verbosity
=
2
set_verbosity_level
(
logger
,
verbosity
)
# Loading LFW models
database
=
bob
.
db
.
lfw
.
Database
()
all_pairs
=
get_pairs
(
database
.
pairs
(
protocol
=
protocol
),
match
=
True
)
client_ids
=
list
(
set
([
f
.
client_id
for
f
in
all_pairs
]))
client_ids
=
dict
(
zip
(
client_ids
,
range
(
len
(
client_ids
))))
create_directories_safe
(
os
.
path
.
dirname
(
output_file
))
n_files
=
len
(
all_pairs
)
with
tf
.
python_io
.
TFRecordWriter
(
output_file
)
as
writer
:
for
i
,
f
in
enumerate
(
all_pairs
):
logger
.
info
(
'
Processing file %d out of %d
'
,
i
+
1
,
n_files
)
path
=
f
.
make_path
(
data_path
,
extension
)
data
=
reader
(
path
).
astype
(
'
float32
'
).
tostring
()
feature
=
{
'
train/data
'
:
_bytes_feature
(
data
),
'
train/label
'
:
_int64_feature
(
file_to_label
(
client_ids
,
f
))}
example
=
tf
.
train
.
Example
(
features
=
tf
.
train
.
Features
(
feature
=
feature
))
writer
.
write
(
example
.
SerializeToString
())
if
__name__
==
'
__main__
'
:
main
()
Loading