Skip to content
GitLab
Projects Groups Topics Snippets
  • /
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in
  • bob.learn.tensorflow bob.learn.tensorflow
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributor statistics
    • Graph
    • Compare revisions
  • Issues 11
    • Issues 11
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • bobbob
  • bob.learn.tensorflowbob.learn.tensorflow
  • Issues
  • #19
Closed
Open
Issue created Dec 06, 2016 by Tiago de Freitas Pereira@tiago.pereiraOwner

Make the CNN training easier

Would be very nice to have a script called train.py that receives, as argument, a python script with the network configuration.

Follow bellow a possible docopt description

Train a Neural network using bob.learn.tensorflow

Usage:
  train.py [--batch-size=<arg> --validation-batch-size=<arg> --iterations=<arg> --validation-interval=<arg> --output-dir=<arg> --use-gpu --prefetch ] <configuration>
  train.py -h | --help
Options:
  -h --help     Show this screen.
  --batch-size=<arg>   [default: 32]
  --validation-batch-size=<arg>    [default: 128]
  --iterations=<arg>   [default: 1000]
  --validation-interval=<arg>   [default: 100]
  --output-dir=<arg>    [default: ./logs/]

The python script could be defined as the following

datashuffler = ...
architecture = ....
learning_rate = ...
solver = ....
loss=...
trainer=...
To upload designs, you'll need to enable LFS and have an admin enable hashed storage. More information
Assignee
Assign to
Time tracking