Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bob.learn.tensorflow
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
This is an archived project. Repository and other project resources are read-only.
Show more breadcrumbs
bob
bob.learn.tensorflow
Commits
e346a1f1
Commit
e346a1f1
authored
7 years ago
by
Tiago Pereira
Browse files
Options
Downloads
Patches
Plain Diff
Migrated MLP to tf-slim
parent
5879fa2a
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
bob/learn/tensorflow/network/MLP.py
+35
-34
35 additions, 34 deletions
bob/learn/tensorflow/network/MLP.py
bob/learn/tensorflow/test/test_dnn.py
+24
-16
24 additions, 16 deletions
bob/learn/tensorflow/test/test_dnn.py
with
59 additions
and
50 deletions
bob/learn/tensorflow/network/MLP.py
+
35
−
34
View file @
e346a1f1
...
...
@@ -8,13 +8,9 @@ Class that creates the lenet architecture
"""
import
tensorflow
as
tf
from
.SequenceNetwork
import
SequenceNetwork
from
..layers
import
Conv2D
,
FullyConnected
,
MaxPooling
from
bob.learn.tensorflow.initialization
import
Xavier
from
bob.learn.tensorflow.initialization
import
Constant
class
MLP
(
SequenceNetwork
):
class
MLP
(
object
):
"""
An MLP is a representation of a Multi-Layer Perceptron.
This implementation is feed-forward and fully-connected.
...
...
@@ -35,39 +31,44 @@ class MLP(SequenceNetwork):
output_activation: Activation of the output layer. If you set to `None`, the activation will be linear
weights_initialization: How you will initialize the neurons.
See :py:mod:`bob.learn.tensorflow.initialization`.
seed:
bias_initialization: How you will initialize the biases.
See :py:mod:`bob.learn.tensorflow.initialization`.
use_gpu: If ``True`` uses the GPU in the computation
seed = 10
device:
"""
def
__init__
(
self
,
output_shape
,
hidden_layers
=
[
10
],
hidden_activation
=
tf
.
nn
.
tanh
,
output_activation
=
None
,
weights_initialization
=
Xavier
(),
bias_initialization
=
Constant
(),
use_gpu
=
False
):
super
(
MLP
,
self
).
__init__
(
use_gpu
=
use_gpu
)
if
(
not
(
isinstance
(
hidden_layers
,
list
)
or
isinstance
(
hidden_layers
,
tuple
)))
or
len
(
hidden_layers
)
==
0
:
raise
ValueError
(
"
Invalid input for hidden_layers: {0}
"
.
format
(
hidden_layers
))
for
i
in
range
(
len
(
hidden_layers
)):
l
=
hidden_layers
[
i
]
self
.
add
(
FullyConnected
(
name
=
"
mlp_fc{0}
"
.
format
(
i
),
output_dim
=
l
,
activation
=
hidden_activation
,
weights_initialization
=
weights_initialization
,
bias_initialization
=
bias_initialization
))
self
.
add
(
FullyConnected
(
name
=
"
mlp_fc_output
"
,
output_dim
=
output_shape
,
activation
=
output_activation
,
weights_initialization
=
weights_initialization
,
bias_initialization
=
bias_initialization
))
seed
=
10
,
device
=
"
/cpu:0
"
):
self
.
output_shape
=
output_shape
self
.
hidden_layers
=
hidden_layers
self
.
hidden_activation
=
hidden_activation
self
.
output_activation
=
output_activation
self
.
seed
=
seed
self
.
device
=
device
def
__call__
(
self
,
inputs
):
slim
=
tf
.
contrib
.
slim
initializer
=
tf
.
contrib
.
layers
.
xavier_initializer
(
uniform
=
False
,
dtype
=
tf
.
float32
,
seed
=
self
.
seed
)
#if (not (isinstance(hidden_layers, list) or isinstance(hidden_layers, tuple))) or len(hidden_layers) == 0:
# raise ValueError("Invalid input for hidden_layers: {0} ".format(hidden_layers))
graph
=
inputs
for
i
in
range
(
len
(
self
.
hidden_layers
)):
weights
=
self
.
hidden_layers
[
i
]
graph
=
slim
.
fully_connected
(
graph
,
weights
,
weights_initializer
=
initializer
,
activation_fn
=
self
.
hidden_activation
,
scope
=
'
fc_{0}
'
.
format
(
i
))
graph
=
slim
.
fully_connected
(
graph
,
self
.
output_shape
,
weights_initializer
=
initializer
,
activation_fn
=
self
.
output_activation
,
scope
=
'
fc_output
'
)
return
graph
This diff is collapsed.
Click to expand it.
bob/learn/tensorflow/test/test_dnn.py
+
24
−
16
View file @
e346a1f1
...
...
@@ -4,8 +4,8 @@
# @date: Thu 13 Oct 2016 13:35 CEST
import
numpy
from
bob.learn.tensorflow.datashuffler
import
Memory
from
bob.learn.tensorflow.network
import
MLP
from
bob.learn.tensorflow.datashuffler
import
Memory
,
ScaleFactor
from
bob.learn.tensorflow.network
import
MLP
,
Embedding
from
bob.learn.tensorflow.loss
import
BaseLoss
from
bob.learn.tensorflow.trainers
import
Trainer
,
constant
from
bob.learn.tensorflow.utils
import
load_mnist
...
...
@@ -22,15 +22,16 @@ iterations = 200
seed
=
10
def
validate_network
(
validation_data
,
validation_labels
,
network
):
def
validate_network
(
embedding
,
validation_data
,
validation_labels
):
# Testing
validation_data_shuffler
=
Memory
(
validation_data
,
validation_labels
,
input_shape
=
[
784
],
batch_size
=
validation_batch_size
)
input_shape
=
[
None
,
28
*
28
],
batch_size
=
validation_batch_size
,
normalizer
=
ScaleFactor
())
[
data
,
labels
]
=
validation_data_shuffler
.
get_batch
()
predictions
=
network
.
predict
(
data
)
accuracy
=
100.
*
numpy
.
sum
(
predictions
==
labels
)
/
predictions
.
shape
[
0
]
predictions
=
embedding
(
data
)
accuracy
=
100.
*
numpy
.
sum
(
numpy
.
argmax
(
predictions
,
axis
=
1
)
==
labels
)
/
predictions
.
shape
[
0
]
return
accuracy
...
...
@@ -40,30 +41,37 @@ def test_dnn_trainer():
# Creating datashufflers
train_data_shuffler
=
Memory
(
train_data
,
train_labels
,
input_shape
=
[
784
],
batch_size
=
batch_size
)
input_shape
=
[
None
,
784
],
batch_size
=
batch_size
,
normalizer
=
ScaleFactor
())
directory
=
"
./temp/dnn
"
# Preparing the architecture
architecture
=
MLP
(
10
,
hidden_layers
=
[
20
,
40
])
input_pl
=
train_data_shuffler
(
"
data
"
,
from_queue
=
False
)
graph
=
architecture
(
input_pl
)
# Loss for the softmax
loss
=
BaseLoss
(
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
,
tf
.
reduce_mean
)
# One graph trainer
trainer
=
Trainer
(
architecture
=
architecture
,
loss
=
loss
,
trainer
=
Trainer
(
train_data_shuffler
,
iterations
=
iterations
,
analizer
=
None
,
prefetch
=
False
,
learning_rate
=
constant
(
0.05
,
name
=
"
dnn_lr
"
),
optimizer
=
tf
.
train
.
AdamOptimizer
(
name
=
"
adam_dnn
"
),
temp_dir
=
directory
)
trainer
.
train
(
train_data_shuffler
)
accuracy
=
validate_network
(
validation_data
,
validation_labels
,
architecture
)
trainer
.
create_network_from_scratch
(
graph
=
graph
,
loss
=
loss
,
learning_rate
=
constant
(
0.01
,
name
=
"
regular_lr
"
),
optimizer
=
tf
.
train
.
GradientDescentOptimizer
(
0.01
),
)
trainer
.
train
()
embedding
=
Embedding
(
train_data_shuffler
(
"
data
"
,
from_queue
=
False
),
graph
)
accuracy
=
validate_network
(
embedding
,
validation_data
,
validation_labels
)
# At least 50% of accuracy for the DNN
assert
accuracy
>
50.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment