Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bob.learn.tensorflow
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
This is an archived project. Repository and other project resources are read-only.
Show more breadcrumbs
bob
bob.learn.tensorflow
Commits
dd4467be
There was a problem fetching the pipeline summary.
Commit
dd4467be
authored
7 years ago
by
Amir MOHAMMADI
Browse files
Options
Downloads
Patches
Plain Diff
Add a joint lenet and inception model
parent
01e02f37
No related branches found
No related tags found
1 merge request
!56
Add a joint lenet and inception model
Pipeline
#
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
bob/learn/tensorflow/network/JointIncResV2Simple.py
+152
-0
152 additions, 0 deletions
bob/learn/tensorflow/network/JointIncResV2Simple.py
with
152 additions
and
0 deletions
bob/learn/tensorflow/network/JointIncResV2Simple.py
0 → 100644
+
152
−
0
View file @
dd4467be
from
.InceptionResnetV2
import
inception_resnet_v2_batch_norm
from
.SimpleCNN
import
base_architecture
as
simplecnn_arch
import
numpy
as
np
import
tensorflow
as
tf
def
model_fn
(
features
,
labels
,
mode
,
params
,
config
):
"""
The model function for join face and patch PAD. The input to the model
is 160x160 faces.
"""
faces
=
features
[
'
data
'
]
key
=
features
[
'
key
'
]
# construct patches inside the model
ksizes
=
strides
=
[
1
,
28
,
28
,
1
]
rates
=
[
1
,
1
,
1
,
1
]
patches
=
tf
.
extract_image_patches
(
faces
,
ksizes
,
strides
,
rates
,
'
VALID
'
)
n_blocks
=
int
(
np
.
prod
(
patches
.
shape
[
1
:
3
]))
# n_blocks should be 25 for 160x160 faces
patches
=
tf
.
reshape
(
patches
,
[
-
1
,
n_blocks
,
28
,
28
,
3
])
# organize the parameters
params
=
params
or
{}
learning_rate
=
params
.
get
(
'
learning_rate
'
,
1e-4
)
apply_moving_averages
=
params
.
get
(
'
apply_moving_averages
'
,
True
)
n_classes
=
params
.
get
(
'
n_classes
'
,
2
)
add_histograms
=
params
.
get
(
'
add_histograms
'
)
simplecnn_kwargs
=
{
'
kernerl_size
'
:
(
3
,
3
),
'
data_format
'
:
'
channels_last
'
,
'
add_batch_norm
'
:
True
,
}
# construct simplecnn from patches
for
i
in
range
(
n_blocks
):
if
i
==
0
:
reuse
=
False
else
:
reuse
=
True
with
tf
.
variable_scope
(
'
SimpleCNN
'
,
reuse
=
reuse
):
net
,
_
=
simplecnn_arch
(
patches
[:,
i
],
mode
,
**
simplecnn_kwargs
)
if
i
==
0
:
simplecnn_embeddings
=
net
else
:
simplecnn_embeddings
+=
net
# average the embeddings of patches
simplecnn_embeddings
/=
n_blocks
# construct inception_resnet_v2 from faces
incresv2_embeddings
,
_
=
inception_resnet_v2_batch_norm
(
faces
,
mode
=
mode
)
embeddings
=
tf
.
concat
([
simplecnn_embeddings
,
incresv2_embeddings
],
1
)
# Logits layer
logits
=
tf
.
layers
.
dense
(
inputs
=
embeddings
,
units
=
n_classes
,
name
=
'
logits
'
)
# # restore the model from an extra_checkpoint
# if extra_checkpoint is not None and mode == tf.estimator.ModeKeys.TRAIN:
# tf.train.init_from_checkpoint(
# ckpt_dir_or_file=extra_checkpoint["checkpoint_path"],
# assignment_map=extra_checkpoint["scopes"],
# )
predictions
=
{
# Generate predictions (for PREDICT and EVAL mode)
"
classes
"
:
tf
.
argmax
(
input
=
logits
,
axis
=
1
),
# Add `softmax_tensor` to the graph. It is used for PREDICT and by the
# `logging_hook`.
"
probabilities
"
:
tf
.
nn
.
softmax
(
logits
,
name
=
"
softmax_tensor
"
),
'
key
'
:
key
,
}
if
mode
==
tf
.
estimator
.
ModeKeys
.
PREDICT
:
return
tf
.
estimator
.
EstimatorSpec
(
mode
=
mode
,
predictions
=
predictions
)
accuracy
=
tf
.
metrics
.
accuracy
(
labels
=
labels
,
predictions
=
predictions
[
"
classes
"
])
metrics
=
{
'
accuracy
'
:
accuracy
}
global_step
=
tf
.
train
.
get_or_create_global_step
()
# Compute the moving average of all individual losses and the total loss.
if
apply_moving_averages
and
mode
==
tf
.
estimator
.
ModeKeys
.
TRAIN
:
variable_averages
=
tf
.
train
.
ExponentialMovingAverage
(
0.9999
,
global_step
)
variable_averages_op
=
variable_averages
.
apply
(
tf
.
trainable_variables
())
else
:
variable_averages_op
=
tf
.
no_op
(
name
=
'
noop
'
)
if
mode
==
tf
.
estimator
.
ModeKeys
.
TRAIN
:
# for batch normalization to be updated as well:
update_ops
=
tf
.
get_collection
(
tf
.
GraphKeys
.
UPDATE_OPS
)
else
:
update_ops
=
[]
with
tf
.
control_dependencies
([
variable_averages_op
]
+
update_ops
):
# Calculate Loss (for both TRAIN and EVAL modes)
cross_loss
=
tf
.
losses
.
sparse_softmax_cross_entropy
(
logits
=
logits
,
labels
=
labels
)
regularization_losses
=
tf
.
get_collection
(
tf
.
GraphKeys
.
REGULARIZATION_LOSSES
)
loss
=
tf
.
add_n
(
[
cross_loss
]
+
regularization_losses
,
name
=
"
total_loss
"
)
if
apply_moving_averages
and
mode
==
tf
.
estimator
.
ModeKeys
.
TRAIN
:
# Compute the moving average of all individual losses and the total
# loss.
loss_averages
=
tf
.
train
.
ExponentialMovingAverage
(
0.9
,
name
=
'
avg
'
)
loss_averages_op
=
loss_averages
.
apply
(
tf
.
get_collection
(
tf
.
GraphKeys
.
LOSSES
))
else
:
loss_averages_op
=
tf
.
no_op
(
name
=
'
noop
'
)
if
mode
==
tf
.
estimator
.
ModeKeys
.
TRAIN
:
optimizer
=
tf
.
train
.
GradientDescentOptimizer
(
learning_rate
=
learning_rate
)
train_op
=
tf
.
group
(
optimizer
.
minimize
(
loss
,
global_step
=
global_step
),
variable_averages_op
,
loss_averages_op
)
# Log accuracy and loss
with
tf
.
name_scope
(
'
train_metrics
'
):
tf
.
summary
.
scalar
(
'
accuracy
'
,
accuracy
[
1
])
tf
.
summary
.
scalar
(
'
cross_entropy_loss
'
,
cross_loss
)
tf
.
summary
.
scalar
(
'
loss
'
,
loss
)
if
apply_moving_averages
:
for
l
in
tf
.
get_collection
(
tf
.
GraphKeys
.
LOSSES
):
tf
.
summary
.
scalar
(
l
.
op
.
name
+
"
_averaged
"
,
loss_averages
.
average
(
l
))
# add histograms summaries
if
add_histograms
==
'
all
'
:
for
v
in
tf
.
all_variables
():
tf
.
summary
.
histogram
(
v
.
name
,
v
)
elif
add_histograms
==
'
train
'
:
for
v
in
tf
.
trainable_variables
():
tf
.
summary
.
histogram
(
v
.
name
,
v
)
else
:
train_op
=
None
return
tf
.
estimator
.
EstimatorSpec
(
mode
=
mode
,
predictions
=
predictions
,
loss
=
loss
,
train_op
=
train_op
,
eval_metric_ops
=
metrics
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment