Skip to content
Snippets Groups Projects
Commit 88eea1d2 authored by Amir MOHAMMADI's avatar Amir MOHAMMADI
Browse files

Trun nitpicky back on!

parent 7e2d37d7
No related branches found
No related tags found
1 merge request!76Estimators optimize loss
Pipeline #29816 failed
......@@ -44,7 +44,7 @@ def dataset_to_tfrecord(dataset, output):
Parameters
----------
dataset : tf.data.Dataset
dataset : ``tf.data.Dataset``
The tf.data.Dataset that you want to write into a TFRecord file.
output : str
Path to the TFRecord file. Besides this file, a .json file is also created.
......@@ -53,7 +53,7 @@ def dataset_to_tfrecord(dataset, output):
Returns
-------
tf.Operation
``tf.Operation``
A tf.Operation that, when run, writes contents of dataset to a file. When
running in eager mode, calling this function will write the file. Otherwise, you
have to call session.run() on the returned operation.
......@@ -100,7 +100,7 @@ def dataset_from_tfrecord(tfrecord):
Returns
-------
tf.data.Dataset
``tf.data.Dataset``
A dataset that contains the data from the TFRecord file.
"""
# these imports are needed so that eval can work
......@@ -468,7 +468,8 @@ def batch_data_and_labels(
"""
Dump in order batches from a list of tf-record files
**Parameters**
Parameters
----------
tfrecord_filenames:
List containing the tf-record paths
......
......@@ -15,17 +15,17 @@ def balanced_softmax_cross_entropy_loss_weights(labels, dtype="float32"):
Parameters
----------
labels : tf.Tensor
labels : ``tf.Tensor``
Labels of your current input. The shape must be [batch_size, n_classes]. If your
labels are not one-hot encoded, you can use ``tf.one_hot`` to convert them first
before giving them to this function.
dtype : dtype
dtype : ``tf.dtype``
The dtype that weights will have. It should be float. Best is to provide
logits.dtype as input.
Returns
-------
tf.Tensor
``tf.Tensor``
Computed weights that will cancel your dataset imbalance per batch.
Examples
......@@ -100,16 +100,16 @@ def balanced_sigmoid_cross_entropy_loss_weights(labels, dtype="float32"):
Parameters
----------
labels : tf.Tensor
labels : ``tf.Tensor``
Labels of your current input. The shape must be [batch_size] and values must be
either 0 or 1.
dtype : dtype
dtype : ``tf.dtype``
The dtype that weights will have. It should be float. Best is to provide
logits.dtype as input.
Returns
-------
tf.Tensor
``tf.Tensor``
Computed weights that will cancel your dataset imbalance per batch.
Examples
......
......@@ -30,7 +30,7 @@ extensions = [
]
# Be picky about warnings
nitpicky = False
nitpicky = True
# Ignores stuff we can't easily resolve on other project's sphinx manuals
nitpick_ignore = []
......
......@@ -86,6 +86,7 @@ Detailed Information
.. automodule:: bob.learn.tensorflow
.. automodule:: bob.learn.tensorflow.estimators
.. automodule:: bob.learn.tensorflow.dataset
.. automodule:: bob.learn.tensorflow.dataset.generator
.. automodule:: bob.learn.tensorflow.dataset.bio
.. automodule:: bob.learn.tensorflow.dataset.image
.. automodule:: bob.learn.tensorflow.dataset.siamese_image
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment