Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bob.learn.tensorflow
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
This is an archived project. Repository and other project resources are read-only.
Show more breadcrumbs
bob
bob.learn.tensorflow
Commits
711641ba
Commit
711641ba
authored
8 years ago
by
Tiago de Freitas Pereira
Browse files
Options
Downloads
Patches
Plain Diff
Added tests for the triplet data shufflers
parent
95398b3b
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
bob/learn/tensorflow/datashuffler/TripletWithSelectionDisk.py
+6
-29
6 additions, 29 deletions
...learn/tensorflow/datashuffler/TripletWithSelectionDisk.py
bob/learn/tensorflow/test/test_datashuffler.py
+46
-8
46 additions, 8 deletions
bob/learn/tensorflow/test/test_datashuffler.py
with
52 additions
and
37 deletions
bob/learn/tensorflow/datashuffler/TripletWithSelectionDisk.py
+
6
−
29
View file @
711641ba
...
...
@@ -52,7 +52,6 @@ class TripletWithSelectionDisk(Triplet, Disk, OnLineSampling):
def
__init__
(
self
,
data
,
labels
,
input_shape
,
input_dtype
=
"
float64
"
,
scale
=
True
,
batch_size
=
1
,
seed
=
10
,
data_augmentation
=
None
,
...
...
@@ -64,7 +63,6 @@ class TripletWithSelectionDisk(Triplet, Disk, OnLineSampling):
labels
=
labels
,
input_shape
=
input_shape
,
input_dtype
=
input_dtype
,
scale
=
scale
,
batch_size
=
batch_size
,
seed
=
seed
,
data_augmentation
=
data_augmentation
,
...
...
@@ -93,13 +91,9 @@ class TripletWithSelectionDisk(Triplet, Disk, OnLineSampling):
for
i
in
range
(
self
.
shape
[
0
]):
file_name_a
,
file_name_p
,
file_name_n
=
self
.
get_one_triplet
(
self
.
data
,
self
.
labels
)
sample_a
[
i
,
...]
=
self
.
load_from_file
(
str
(
file_name_a
))
sample_p
[
i
,
...]
=
self
.
load_from_file
(
str
(
file_name_p
))
sample_n
[
i
,
...]
=
self
.
load_from_file
(
str
(
file_name_n
))
sample_a
=
self
.
normalize_sample
(
sample_a
)
sample_p
=
self
.
normalize_sample
(
sample_p
)
sample_n
=
self
.
normalize_sample
(
sample_n
)
sample_a
[
i
,
...]
=
self
.
normalize_sample
(
self
.
load_from_file
(
str
(
file_name_a
)))
sample_p
[
i
,
...]
=
self
.
normalize_sample
(
self
.
load_from_file
(
str
(
file_name_p
)))
sample_n
[
i
,
...]
=
self
.
normalize_sample
(
self
.
load_from_file
(
str
(
file_name_n
)))
return
[
sample_a
,
sample_p
,
sample_n
]
...
...
@@ -181,7 +175,6 @@ class TripletWithSelectionDisk(Triplet, Disk, OnLineSampling):
The best positive sample for the anchor is the farthest from the anchor
"""
#logger.info("****************** numpy.where")
indexes
=
numpy
.
where
(
self
.
labels
==
label
)[
0
]
numpy
.
random
.
shuffle
(
indexes
)
...
...
@@ -190,26 +183,19 @@ class TripletWithSelectionDisk(Triplet, Disk, OnLineSampling):
distances
=
[]
shape
=
tuple
([
len
(
indexes
)]
+
list
(
self
.
shape
[
1
:]))
sample_p
=
numpy
.
zeros
(
shape
=
shape
,
dtype
=
'
float32
'
)
#logger.info("****************** search")
for
i
in
range
(
shape
[
0
]):
#logger.info("****************** fetch")
file_name
=
self
.
data
[
indexes
[
i
],
...]
#logger.info("****************** load")
sample_p
[
i
,
...]
=
self
.
load_from_file
(
str
(
file_name
))
sample_p
[
i
,
...]
=
self
.
normalize_sample
(
self
.
load_from_file
(
str
(
file_name
)))
sample_p
=
self
.
normalize_sample
(
sample_p
)
#logger.info("****************** project")
embedding_p
=
self
.
project
(
sample_p
)
#logger.info("****************** distances")
# Projecting the positive instances
for
p
in
embedding_p
:
distances
.
append
(
euclidean
(
embedding_a
,
p
))
# Geting the max
index
=
numpy
.
argmax
(
distances
)
#logger.info("****************** return")
return
sample_p
[
index
,
...],
distances
[
index
]
def
get_negative
(
self
,
label
,
embedding_a
,
distance_anchor_positive
):
...
...
@@ -220,7 +206,6 @@ class TripletWithSelectionDisk(Triplet, Disk, OnLineSampling):
#anchor_feature = self.feature_extractor(self.reshape_for_deploy(anchor), session=self.session)
# Selecting the negative samples
#logger.info("****************** numpy.where")
indexes
=
numpy
.
where
(
self
.
labels
!=
label
)[
0
]
numpy
.
random
.
shuffle
(
indexes
)
indexes
=
indexes
[
...
...
@@ -228,20 +213,13 @@ class TripletWithSelectionDisk(Triplet, Disk, OnLineSampling):
shape
=
tuple
([
len
(
indexes
)]
+
list
(
self
.
shape
[
1
:]))
sample_n
=
numpy
.
zeros
(
shape
=
shape
,
dtype
=
'
float32
'
)
#logger.info("****************** search")
for
i
in
range
(
shape
[
0
]):
#logger.info("****************** fetch")
file_name
=
self
.
data
[
indexes
[
i
],
...]
#logger.info("****************** load")
sample_n
[
i
,
...]
=
self
.
load_from_file
(
str
(
file_name
))
sample_n
=
self
.
normalize_sample
(
sample_n
)
sample_n
[
i
,
...]
=
self
.
normalize_sample
(
self
.
load_from_file
(
str
(
file_name
)))
#logger.info("****************** project")
embedding_n
=
self
.
project
(
sample_n
)
distances
=
[]
#logger.info("****************** distances")
for
n
in
embedding_n
:
d
=
euclidean
(
embedding_a
,
n
)
...
...
@@ -258,5 +236,4 @@ class TripletWithSelectionDisk(Triplet, Disk, OnLineSampling):
if
numpy
.
isinf
(
distances
[
index
]):
logger
.
info
(
"
SEMI-HARD negative not found, took the first one
"
)
index
=
0
#logger.info("****************** return")
return
sample_n
[
index
,
...]
This diff is collapsed.
Click to expand it.
bob/learn/tensorflow/test/test_datashuffler.py
+
46
−
8
View file @
711641ba
...
...
@@ -4,7 +4,8 @@
# @date: Thu 13 Oct 2016 13:35 CEST
import
numpy
from
bob.learn.tensorflow.datashuffler
import
Memory
,
SiameseMemory
,
TripletMemory
,
Disk
,
SiameseDisk
,
TripletDisk
from
bob.learn.tensorflow.datashuffler
import
Memory
,
SiameseMemory
,
TripletMemory
,
Disk
,
SiameseDisk
,
TripletDisk
,
\
TripletWithFastSelectionDisk
,
TripletWithSelectionDisk
import
pkg_resources
from
bob.learn.tensorflow.utils
import
load_mnist
import
os
...
...
@@ -15,7 +16,6 @@ Some unit tests for the datashuffler
def
get_dummy_files
():
base_path
=
pkg_resources
.
resource_filename
(
__name__
,
'
data/dummy_database
'
)
files
=
[]
clients
=
[]
...
...
@@ -28,7 +28,6 @@ def get_dummy_files():
def
test_memory_shuffler
():
train_data
,
train_labels
,
validation_data
,
validation_labels
=
load_mnist
()
train_data
=
numpy
.
reshape
(
train_data
,
(
train_data
.
shape
[
0
],
28
,
28
,
1
))
...
...
@@ -50,7 +49,6 @@ def test_memory_shuffler():
def
test_siamesememory_shuffler
():
train_data
,
train_labels
,
validation_data
,
validation_labels
=
load_mnist
()
train_data
=
numpy
.
reshape
(
train_data
,
(
train_data
.
shape
[
0
],
28
,
28
,
1
))
...
...
@@ -74,7 +72,6 @@ def test_siamesememory_shuffler():
def
test_tripletmemory_shuffler
():
train_data
,
train_labels
,
validation_data
,
validation_labels
=
load_mnist
()
train_data
=
numpy
.
reshape
(
train_data
,
(
train_data
.
shape
[
0
],
28
,
28
,
1
))
...
...
@@ -98,7 +95,6 @@ def test_tripletmemory_shuffler():
def
test_disk_shuffler
():
train_data
,
train_labels
=
get_dummy_files
()
batch_shape
=
[
2
,
125
,
125
,
3
]
...
...
@@ -119,7 +115,6 @@ def test_disk_shuffler():
def
test_siamesedisk_shuffler
():
train_data
,
train_labels
=
get_dummy_files
()
batch_shape
=
[
2
,
125
,
125
,
3
]
...
...
@@ -142,7 +137,6 @@ def test_siamesedisk_shuffler():
def
test_tripletdisk_shuffler
():
train_data
,
train_labels
=
get_dummy_files
()
batch_shape
=
[
1
,
125
,
125
,
3
]
...
...
@@ -164,3 +158,47 @@ def test_tripletdisk_shuffler():
assert
placeholders
[
2
].
get_shape
().
as_list
()
==
batch_shape
def
test_triplet_fast_selection_disk_shuffler
():
train_data
,
train_labels
=
get_dummy_files
()
batch_shape
=
[
1
,
125
,
125
,
3
]
data_shuffler
=
TripletWithFastSelectionDisk
(
train_data
,
train_labels
,
input_shape
=
batch_shape
[
1
:],
total_identities
=
1
,
batch_size
=
batch_shape
[
0
])
batch
=
data_shuffler
.
get_batch
()
assert
len
(
batch
)
==
3
assert
batch
[
0
].
shape
==
tuple
(
batch_shape
)
assert
batch
[
1
].
shape
==
tuple
(
batch_shape
)
assert
batch
[
2
].
shape
==
tuple
(
batch_shape
)
placeholders
=
data_shuffler
.
get_placeholders
(
name
=
"
train
"
)
assert
placeholders
[
0
].
get_shape
().
as_list
()
==
batch_shape
assert
placeholders
[
1
].
get_shape
().
as_list
()
==
batch_shape
assert
placeholders
[
2
].
get_shape
().
as_list
()
==
batch_shape
def
test_triplet_selection_disk_shuffler
():
train_data
,
train_labels
=
get_dummy_files
()
batch_shape
=
[
1
,
125
,
125
,
3
]
data_shuffler
=
TripletWithSelectionDisk
(
train_data
,
train_labels
,
input_shape
=
batch_shape
[
1
:],
total_identities
=
1
,
batch_size
=
batch_shape
[
0
])
batch
=
data_shuffler
.
get_batch
()
assert
len
(
batch
)
==
3
assert
batch
[
0
].
shape
==
tuple
(
batch_shape
)
assert
batch
[
1
].
shape
==
tuple
(
batch_shape
)
assert
batch
[
2
].
shape
==
tuple
(
batch_shape
)
placeholders
=
data_shuffler
.
get_placeholders
(
name
=
"
train
"
)
assert
placeholders
[
0
].
get_shape
().
as_list
()
==
batch_shape
assert
placeholders
[
1
].
get_shape
().
as_list
()
==
batch_shape
assert
placeholders
[
2
].
get_shape
().
as_list
()
==
batch_shape
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment