Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bob.learn.tensorflow
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
This is an archived project. Repository and other project resources are read-only.
Show more breadcrumbs
bob
bob.learn.tensorflow
Commits
57851864
Commit
57851864
authored
7 years ago
by
Amir MOHAMMADI
Browse files
Options
Downloads
Patches
Plain Diff
Complete patchCNN
parent
191b69e1
No related branches found
No related tags found
1 merge request
!47
Many changes
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
bob/learn/tensorflow/network/PatchCNN.py
+59
-27
59 additions, 27 deletions
bob/learn/tensorflow/network/PatchCNN.py
with
59 additions
and
27 deletions
bob/learn/tensorflow/network/PatchCNN.py
+
59
−
27
View file @
57851864
...
...
@@ -47,7 +47,7 @@ import tensorflow as tf
def
base_architecture
(
input_layer
,
mode
,
data_format
,
**
kwargs
):
# Keep track of all the endpoints
endpoints
=
{}
bn_axis
=
1
if
data_format
.
lower
()
==
'
channels_first
'
else
-
1
bn_axis
=
1
if
data_format
.
lower
()
==
'
channels_first
'
else
3
training
=
mode
==
tf
.
estimator
.
ModeKeys
.
TRAIN
# ======================
...
...
@@ -57,17 +57,20 @@ def base_architecture(input_layer, mode, data_format, **kwargs):
filters
=
50
,
kernel_size
=
(
5
,
5
),
padding
=
"
same
"
,
activation
=
tf
.
nn
.
relu
,
activation
=
None
,
data_format
=
data_format
)
endpoints
[
'
Conv-1
'
]
=
conv1
# Batch Normalization #1
bn1
=
tf
.
layers
.
batch_normalization
(
conv1
,
axis
=
bn_axis
,
training
=
training
)
bn1
=
tf
.
layers
.
batch_normalization
(
conv1
,
axis
=
bn_axis
,
training
=
training
,
fused
=
True
)
endpoints
[
'
BN-1
'
]
=
bn1
bn1_act
=
tf
.
nn
.
relu
(
bn1
)
endpoints
[
'
BN-1-activation
'
]
=
bn1_act
# Pooling Layer #1
pool1
=
tf
.
layers
.
max_pooling2d
(
inputs
=
bn1
,
pool_size
=
[
2
,
2
],
strides
=
2
,
data_format
=
data_format
)
inputs
=
bn1
_act
,
pool_size
=
[
2
,
2
],
strides
=
2
,
data_format
=
data_format
)
endpoints
[
'
MaxPooling-1
'
]
=
pool1
# ======================
...
...
@@ -77,17 +80,20 @@ def base_architecture(input_layer, mode, data_format, **kwargs):
filters
=
100
,
kernel_size
=
(
3
,
3
),
padding
=
"
same
"
,
activation
=
tf
.
nn
.
relu
,
activation
=
None
,
data_format
=
data_format
)
endpoints
[
'
Conv-2
'
]
=
conv2
# Batch Normalization #2
bn2
=
tf
.
layers
.
batch_normalization
(
conv2
,
axis
=
bn_axis
,
training
=
training
)
bn2
=
tf
.
layers
.
batch_normalization
(
conv2
,
axis
=
bn_axis
,
training
=
training
,
fused
=
True
)
endpoints
[
'
BN-2
'
]
=
bn2
bn2_act
=
tf
.
nn
.
relu
(
bn2
)
endpoints
[
'
BN-2-activation
'
]
=
bn2_act
# Pooling Layer #2
pool2
=
tf
.
layers
.
max_pooling2d
(
inputs
=
bn2
,
pool_size
=
[
2
,
2
],
strides
=
2
,
data_format
=
data_format
)
inputs
=
bn2
_act
,
pool_size
=
[
2
,
2
],
strides
=
2
,
data_format
=
data_format
)
endpoints
[
'
MaxPooling-2
'
]
=
pool2
# ======================
...
...
@@ -97,17 +103,20 @@ def base_architecture(input_layer, mode, data_format, **kwargs):
filters
=
150
,
kernel_size
=
(
3
,
3
),
padding
=
"
same
"
,
activation
=
tf
.
nn
.
relu
,
activation
=
None
,
data_format
=
data_format
)
endpoints
[
'
Conv-3
'
]
=
conv3
# Batch Normalization #3
bn3
=
tf
.
layers
.
batch_normalization
(
conv3
,
axis
=
bn_axis
,
training
=
training
)
bn3
=
tf
.
layers
.
batch_normalization
(
conv3
,
axis
=
bn_axis
,
training
=
training
,
fused
=
True
)
endpoints
[
'
BN-3
'
]
=
bn3
bn3_act
=
tf
.
nn
.
relu
(
bn3
)
endpoints
[
'
BN-3-activation
'
]
=
bn3_act
# Pooling Layer #3
pool3
=
tf
.
layers
.
max_pooling2d
(
inputs
=
bn3
,
pool_size
=
[
3
,
3
],
strides
=
2
,
data_format
=
data_format
)
inputs
=
bn3
_act
,
pool_size
=
[
3
,
3
],
strides
=
2
,
data_format
=
data_format
)
endpoints
[
'
MaxPooling-3
'
]
=
pool3
# ======================
...
...
@@ -117,17 +126,20 @@ def base_architecture(input_layer, mode, data_format, **kwargs):
filters
=
200
,
kernel_size
=
(
3
,
3
),
padding
=
"
same
"
,
activation
=
tf
.
nn
.
relu
,
activation
=
None
,
data_format
=
data_format
)
endpoints
[
'
Conv-4
'
]
=
conv4
# Batch Normalization #4
bn4
=
tf
.
layers
.
batch_normalization
(
conv4
,
axis
=
bn_axis
,
training
=
training
)
bn4
=
tf
.
layers
.
batch_normalization
(
conv4
,
axis
=
bn_axis
,
training
=
training
,
fused
=
True
)
endpoints
[
'
BN-4
'
]
=
bn4
bn4_act
=
tf
.
nn
.
relu
(
bn4
)
endpoints
[
'
BN-4-activation
'
]
=
bn4_act
# Pooling Layer #4
pool4
=
tf
.
layers
.
max_pooling2d
(
inputs
=
bn4
,
pool_size
=
[
2
,
2
],
strides
=
2
,
data_format
=
data_format
)
inputs
=
bn4
_act
,
pool_size
=
[
2
,
2
],
strides
=
2
,
data_format
=
data_format
)
endpoints
[
'
MaxPooling-4
'
]
=
pool4
# ======================
...
...
@@ -137,17 +149,20 @@ def base_architecture(input_layer, mode, data_format, **kwargs):
filters
=
250
,
kernel_size
=
(
3
,
3
),
padding
=
"
same
"
,
activation
=
tf
.
nn
.
relu
,
activation
=
None
,
data_format
=
data_format
)
endpoints
[
'
Conv-5
'
]
=
conv5
# Batch Normalization #5
bn5
=
tf
.
layers
.
batch_normalization
(
conv5
,
axis
=
bn_axis
,
training
=
training
)
bn5
=
tf
.
layers
.
batch_normalization
(
conv5
,
axis
=
bn_axis
,
training
=
training
,
fused
=
True
)
endpoints
[
'
BN-5
'
]
=
bn5
bn5_act
=
tf
.
nn
.
relu
(
bn5
)
endpoints
[
'
BN-5-activation
'
]
=
bn5_act
# Pooling Layer #5
pool5
=
tf
.
layers
.
max_pooling2d
(
inputs
=
bn5
,
pool_size
=
[
2
,
2
],
strides
=
2
,
data_format
=
data_format
)
inputs
=
bn5
_act
,
pool_size
=
[
2
,
2
],
strides
=
2
,
data_format
=
data_format
)
endpoints
[
'
MaxPooling-5
'
]
=
pool5
# Flatten tensor into a batch of vectors
...
...
@@ -157,27 +172,33 @@ def base_architecture(input_layer, mode, data_format, **kwargs):
# ========================
# Fully Connected Layer #1
fc_1
=
tf
.
layers
.
dense
(
inputs
=
pool5_flat
,
units
=
1000
,
activation
=
tf
.
nn
.
relu
)
inputs
=
pool5_flat
,
units
=
1000
,
activation
=
None
)
endpoints
[
'
FC-1
'
]
=
fc_1
# Batch Normalization #6
bn6
=
tf
.
layers
.
batch_normalization
(
fc_1
,
axis
=
bn_axis
,
training
=
training
)
bn6
=
tf
.
layers
.
batch_normalization
(
fc_1
,
axis
=
bn_axis
,
training
=
training
,
fused
=
True
)
endpoints
[
'
BN-6
'
]
=
bn6
bn6_act
=
tf
.
nn
.
relu
(
bn6
)
endpoints
[
'
BN-6-activation
'
]
=
bn6_act
# Dropout
dropout
=
tf
.
layers
.
dropout
(
inputs
=
bn6
,
rate
=
0.5
,
training
=
training
)
dropout
=
tf
.
layers
.
dropout
(
inputs
=
bn6
_act
,
rate
=
0.5
,
training
=
training
)
endpoints
[
'
dropout
'
]
=
dropout
# ========================
# Fully Connected Layer #2
fc_2
=
tf
.
layers
.
dense
(
inputs
=
dropout
,
units
=
400
,
activation
=
tf
.
nn
.
relu
)
fc_2
=
tf
.
layers
.
dense
(
inputs
=
dropout
,
units
=
400
,
activation
=
None
)
endpoints
[
'
FC-2
'
]
=
fc_2
# Batch Normalization #7
bn7
=
tf
.
layers
.
batch_normalization
(
fc_2
,
axis
=
bn_axis
,
training
=
training
)
bn7
=
tf
.
layers
.
batch_normalization
(
fc_2
,
axis
=
bn_axis
,
training
=
training
,
fused
=
True
)
endpoints
[
'
BN-7
'
]
=
bn7
bn7_act
=
tf
.
nn
.
relu
(
bn7
)
endpoints
[
'
BN-7-activation
'
]
=
bn7_act
return
bn7
,
endpoints
return
bn7
_act
,
endpoints
def
architecture
(
input_layer
,
...
...
@@ -189,9 +210,9 @@ def architecture(input_layer,
with
tf
.
variable_scope
(
'
PatchCNN
'
,
reuse
=
reuse
):
bn7
,
endpoints
=
base_architecture
(
input_layer
,
mode
,
data_format
)
bn7
_act
,
endpoints
=
base_architecture
(
input_layer
,
mode
,
data_format
)
# Logits layer
logits
=
tf
.
layers
.
dense
(
inputs
=
bn7
,
units
=
n_classes
)
logits
=
tf
.
layers
.
dense
(
inputs
=
bn7
_act
,
units
=
n_classes
)
endpoints
[
'
FC-3
'
]
=
logits
endpoints
[
'
logits
'
]
=
logits
...
...
@@ -204,7 +225,8 @@ def model_fn(features, labels, mode, params=None, config=None):
key
=
features
[
'
key
'
]
params
=
params
or
{}
learning_rate
=
params
.
get
(
'
learning_rate
'
,
1e-3
)
initial_learning_rate
=
params
.
get
(
'
learning_rate
'
,
1e-3
)
momentum
=
params
.
get
(
'
momentum
'
,
0.99
)
arch_kwargs
=
{
'
n_classes
'
:
params
.
get
(
'
n_classes
'
,
None
),
...
...
@@ -233,14 +255,24 @@ def model_fn(features, labels, mode, params=None, config=None):
# Configure the training op
if
mode
==
tf
.
estimator
.
ModeKeys
.
TRAIN
:
optimizer
=
tf
.
train
.
GradientDescentOptimizer
(
learning_rate
=
learning_rate
)
learning_rate
=
tf
.
train
.
exponential_decay
(
learning_rate
=
initial_learning_rate
,
global_step
=
tf
.
train
.
get_or_create_global_step
(),
decay_steps
=
1e5
,
decay_rate
=
1e-4
)
optimizer
=
tf
.
train
.
MomentumOptimizer
(
learning_rate
=
learning_rate
,
momentum
=
momentum
)
train_op
=
optimizer
.
minimize
(
loss
=
loss
,
global_step
=
tf
.
train
.
get_or_create_global_step
())
# Log accuracy and loss
with
tf
.
name_scope
(
'
train_metrics
'
):
tf
.
summary
.
scalar
(
'
accuracy
'
,
accuracy
[
1
])
tf
.
summary
.
scalar
(
'
loss
'
,
loss
)
tf
.
summary
.
scalar
(
'
learning_rate
'
,
learning_rate
)
else
:
train_op
=
None
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment